Chapter 14

Multiple integrals

14.4 Double integral in polar coordinate form

We are given a region D by

$$
D=\left\{(r, \theta) \mid \phi_{1}(\theta) \leq r \leq \phi_{2}(\theta), \quad \alpha \leq \theta \leq \beta\right\} .
$$

We divide D by the curves $\theta=$ constant and the lines $\Delta \theta=(\beta-\alpha) / l$,

$$
r_{0}=\Delta r, r_{1}=2 \Delta r, \ldots, r_{m+1}=m \Delta r
$$

and

$$
\theta_{0}=\alpha, \theta_{1}=\alpha+\Delta \theta, \ldots, \theta_{l+1}=\alpha+l \Delta \theta=\beta
$$

Choose any point $\left(r_{k}, \theta_{k}\right)$ in ΔA_{k} and consider the Riemann sum

$$
\mathcal{R}(f, n)=S_{n}=\sum_{k=1}^{n} f\left(r_{k}, \theta_{k}\right) \Delta A_{k}
$$

Let $\delta=\max _{i, j}\left\{\Delta r_{i}, \Delta \theta_{j}\right\}$. If the limit $\lim _{n \rightarrow \infty} \mathcal{R}(f, n)$ exists (as δ approaches 0), then it is defined as the integral of f on D and we write

$$
\iint_{D} f(r, \theta) d A .
$$

Assume the point $\left(r_{k}, \theta_{k}\right)$ is at the center of ΔA_{k} (figure ??, left). The area

Figure 14.1: Partition in polar coordinate
of ΔA_{k} is

$$
\frac{1}{2}\left(r_{k}+\frac{\Delta r}{2}\right)^{2} \Delta \theta-\frac{1}{2}\left(r_{k}-\frac{\Delta r}{2}\right)^{2} \Delta \theta=r_{k} \Delta r \Delta \theta
$$

Proposition 14.4.1. If D is given by $D=\left\{(r, \theta) \mid \phi_{1}(\theta) \leq r \leq \phi_{2}(\theta), \alpha \leq\right.$ $\theta \leq \beta\}$, the integral of f can be evaluated as the iterated integral:

$$
\iint_{D} f(r, \theta) d A=\int_{\alpha}^{\beta} \int_{\phi_{1}(\theta)}^{\phi_{2}(\theta)} f(r, \theta) r d r d \theta
$$

Example 14.4.2. Find the area of the region inside the cardioid $r=1-\sin \theta$.

Figure 14.2: $r=1-\sin \theta$
sol. cardioid. We see $0 \leq r \leq 1-\sin \theta$

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{r=0}^{r=1-\sin \theta} r d r d \theta & =\int_{0}^{2 \pi}\left[\frac{r^{2}}{2}\right]_{r=0}^{r=1-\sin \theta} d \theta \\
& =\int_{0}^{2 \pi} \frac{(1-\sin \theta)^{2}}{2} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{2 \pi}\left(1-2 \sin \theta+\sin ^{2} \theta\right) d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(1-2 \sin \theta+\frac{1-\cos 2 \theta}{2}\right) d \theta \\
& =\frac{1}{2}\left[\theta+2 \cos \theta+\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]_{0}^{2 \pi} \\
& =\frac{3}{2} \pi
\end{aligned}
$$

Example 14.4.3. The area inside of the cardioid $r=1+\cos \theta$ and outside of the unit circle $r=1$.

$$
r=1+\cos \theta
$$

Figure 14.3: Find the limits of integral $r=1, r=1+\cos \theta$

Example 14.4.4. Change the integral $\iint f(x, y) d x d y$ to polar coordinate.
sol. Since $x=r \cos \theta, y=r \sin \theta$, we can let $T(r, \theta)=(r \cos \theta, r \sin \theta)$.
Then Jacobian is

$$
\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r .
$$

Hence

$$
\iint f(x, y) d x d y=\iint f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Example 14.4.5. D is between two concentric circles: $x^{2}+y^{2}=4, x^{2}+y^{2}=$ $1(x, y \geq 0)$. Find the integral

$$
\iint_{D} \sqrt{x^{2}+y^{2}+1} d x d y
$$

Here D is the quoter of the annulus $\sqrt{1-x^{2}} \leq y \leq \sqrt{4-x^{2}}$.
sol. Use polar coordinate. We see the domain of integration in (r, θ) is

$$
\begin{aligned}
& D^{*}=\{(r, \theta) \mid 1 \leq r \leq 2,0 \leq \theta \leq \pi / 2\} \\
& \iint_{D} \sqrt{x^{2}+y^{2}+1} d x d y=\iint_{D^{*}} \sqrt{r^{2}+1} r d r d \theta \\
&=\int_{0}^{\pi / 2} \int_{1}^{2} \frac{1}{2} \sqrt{r^{2}+1}(2 r) d r d \theta \\
&=\left.\int_{0}^{\pi / 2} \frac{1}{3}\left(r^{2}+1\right)^{3 / 2}\right|_{1} ^{2} d \theta \\
&=\int_{0}^{\pi / 2} \frac{1}{3}\left(5^{3 / 2}-2^{3 / 2}\right) d \theta=\frac{\pi}{6}\left(5^{3 / 2}-2^{3 / 2}\right)
\end{aligned}
$$

Example 14.4.6 (The Gaussian integral). Show that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

To compute this, let us first observe

$$
\begin{aligned}
\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2} & =\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\lim _{a \rightarrow \infty} \iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d x d y
\end{aligned}
$$

Thus it is necessary to compute

$$
\iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

By

$$
\begin{aligned}
\iint_{D_{a}} e^{-\left(x^{2}+y^{2}\right)} d x d y & =\int_{0}^{2 \pi} \int_{0}^{a} e^{-r^{2}} r d r d \theta=\left.\int_{0}^{2 \pi}\left(-\frac{1}{2} e^{-r^{2}}\right)\right|_{0} ^{a} \\
& =-\frac{1}{2} \int_{0}^{2 \pi}\left(e^{-a^{2}}-1\right) d \theta=\pi\left(1-e^{-a^{2}}\right)
\end{aligned}
$$

Let $a \rightarrow \infty$. Then we obtain the result.

14.5 Triple integrals in rectangular coordinates

Figure 14.4: partition of box

Definition 14.5.1. Assume $D=[a, b] \times[c, d] \times[p, q]$ be a box. Then we subdivide intervals $[a, b],[c, d]$ and $[p, q]$ into n-intervals

$$
\begin{aligned}
& a=x_{0}<x_{1}<\cdots<x_{n}=b, \\
& c=y_{0}<y_{1}<\cdots<y_{n}=d, \\
& p=z_{0}<z_{1}<\cdots<z_{n}=q,
\end{aligned}
$$

and call the resulting subboxes $D_{j k}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right] \times\left[z_{k-1}, z_{k}\right]$ a partition of D.

Definition 14.5.2. We let $\Delta V_{i j k}=\Delta x_{i} \Delta y_{j} \Delta z_{k}(i, j, k=1, \ldots, n)$ Then the Riemann sum becomes

$$
\mathcal{R}(f, n)=S_{n}=\sum_{i, j, k=1}^{n} f\left(c_{i j k}\right) \Delta V_{i j k} .
$$

Here $c_{i j k}$ is any point in the subbox $D_{i j k}$.

Definition 14.5.3. If $\lim _{n} S_{n}=S$ exists independently of the choice of $c_{i j k}$, then we say f is integrable in D and call S the triple integral and we write

$$
\iiint_{D} f d V, \quad \iiint_{D} f(x, y, z) d V, \text { or } \quad \iiint_{D} f(x, y, z) d x d y d z .
$$

Reduction to iterated integral

Theorem 14.5.4 (Fubini's theorem). Suppose f is continuous on $D=[a, b] \times$ $[c, d] \times[p, q]$. The triple integral $\iiint_{D} f(x, y, z) d x d y d z$ equals with any of the following integrals.

$$
\int_{p}^{q} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z, \quad \int_{p}^{q} \int_{a}^{b} \int_{c}^{d} f(x, y, z) d y d x d z, \text { etc. }
$$

Elementary regions

Suppose $R=\left\{(x, y) \mid \phi_{1}(x) \leq y \leq \phi_{2}(x), \quad a \leq x \leq b\right\}$ is an elementary region in $x y$-plane and there are continuous functions $\gamma_{1}(x, y), \gamma_{2}(x, y)$ such that

$$
\begin{equation*}
D=\left\{(x, y, z) \mid \gamma_{1}(x, y) \leq z \leq \gamma_{2}(x, y), \quad(x, y) \in R\right\} . \tag{14.1}
\end{equation*}
$$

Then D is called an elementary region of type 1 .

Figure 14.5: elementary region of type 1

Integrals over elementary regions

Then the integral on an elementary region D given above is computed by

$$
\begin{aligned}
\iiint_{D} f d V & =\iint_{R} \int f(x, y, z) d z d A \\
& =\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} \int_{\gamma_{1}(x, y)}^{\gamma_{2}(x, y)} f(x, y, z) d z d y d x
\end{aligned}
$$

Example 14.5.5. Find the volume of radius 1.

Figure 14.6: $x^{2}+y^{2}+z^{2}=1$
sol. Unit ball is described by $x^{2}+y^{2}+z^{2} \leq 1$. The volume is (Figure ??)

$$
\int_{D} 1 d V, \quad D=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}
$$

Here we can take $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ and $D=\left\{-\sqrt{1-x^{2}-y^{2}} \leq z \leq\right.$
$\left.\sqrt{1-x^{2}-y^{2}},(x, y) \in R\right\}$. Hence

$$
\begin{aligned}
\iint_{R} \int d z d y d x & =\iint_{R} \int_{z=-\sqrt{1-x^{2}-y^{2}}}^{z=\sqrt{1-x^{2}-y^{2}}} 1 d z d y d x \\
& =2 \int_{R} \sqrt{1-x^{2}-y^{2}} d y d x \\
& =2 \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}-y^{2}} d y d x
\end{aligned}
$$

This integral can be computed by letting $\sqrt{1-x^{2}}=a$

Figure 14.7: $z=x^{2}+y^{2}, z=2$

Example 14.5.6. Let W be bounded by $x=0, y=0, z=2$ and the surface $z=x^{2}+y^{2}$ where $x \geq 0, y \geq 0$. Find $\iiint_{W} x d x d y d z$.
sol. Method1. We describe the region by type 1 .

$$
\begin{aligned}
0 \leq x \leq \sqrt{2}, \quad 0 & \leq y \leq \sqrt{2-x^{2}}, \quad x^{2}+y^{2} \leq z \leq 2 \\
\iiint_{W} x d x d y d z & =\int_{0}^{\sqrt{2}}\left[\int_{0}^{\sqrt{2-x^{2}}}\left(\int_{x^{2}+y^{2}}^{2} x d z\right) d y\right] d x \\
& =\frac{8 \sqrt{2}}{15}
\end{aligned}
$$

Figure 14.8: common region of two cylinders

Example 14.5.7 (Example 1 p.911). Find the volume of the region D bounded by $z=x^{2}+3 y^{2}$ and $z=8-x^{2}-y^{2}$.
sol. We describe the region by type 1. First find the intersections of two surfaces. Set $x^{2}+3 y^{2}=8-x^{2}-y^{2}$ to get $x^{2}+2 y^{2}=4$. The the domain is the ellipse $x^{2}+2 y^{2}=4$.

$$
\begin{aligned}
-2 \leq x \leq 2, & -\sqrt{\left(4-x^{2}\right) / 2} \leq y \leq \sqrt{\left(4-x^{2}\right) / 2}, \quad x^{2}+3 y^{2} \leq z \leq 8-x^{2}-y^{2} . \\
V(D) & =\iiint_{D} d z d x d y=\int_{-2}^{2}\left[2 \int_{0}^{\sqrt{\left(4-x^{2}\right) / 2}}\left(8-2 x^{2}-4 y^{2}\right) d y\right] d x \\
& =\int_{-2}^{2}\left[2\left(8-2 x^{2}\right) y-\frac{4}{3} y^{3}\right]_{0}^{\sqrt{\left(4-x^{2}\right) / 2}} d x \\
& =8 \pi \sqrt{2} .
\end{aligned}
$$

Example 14.5.8. Find the common region of two cylinders (Figure ??) $x^{2}+$ $y^{2} \leq 1, x^{2}+z^{2} \leq 1(z \geq 0)$.
sol.

$$
\begin{aligned}
\iint_{x^{2}+y^{2} \leq 1} \int_{0}^{\sqrt{1-x^{2}}} d z d x d y & =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}} d y d x \\
& =2 \int_{-1}^{1}\left(1-x^{2}\right) d x \\
& =2\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}=4\left(1-\frac{1}{3}\right)=\frac{8}{3} .
\end{aligned}
$$

14.6 Mass, Moments and Center of Mass

14.7 Triple integrals in Cylindrical and Spherical Coordinate

Cylindrical coordinate system

Given a point $P=(x, y, z)$, we can use polar coordinate for (x, y)-plane. Then it holds that

$$
\text { Cylindrical to Cartesain }\left\{\begin{aligned}
x & =r \cos \theta, \\
y & =r \sin \theta, \\
z & =z
\end{aligned}\right.
$$

We say (r, θ, z) is cylindrical coordinate of P.
Example 14.7.1. Identify the surface given by the equation $z=2 r$ in cylindrical coordinate.
sol. Squaring, we have $z^{2}=4 r^{2}=4\left(x^{2}+y^{2}\right)$. The section $z=c$ is $c^{2}=4\left(x^{2}+y^{2}\right)$, while with $x=0$ we have $z= \pm y$. With $y=0$ we have $z= \pm x$. Thus this is a cone.

Example 14.7.2. Change the equation $x^{2}+y^{2}-z^{2}=1$ to cylindrical coordinate.
sol. $r^{2}-z^{2}=1$.

Figure 14.9: cylindrical coordinate

14.7.1 Integration in Cylindrical Coordinate

Let D be any region in \mathbb{R}^{3}. We describe it using the coordinate

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=z .
$$

We partition the region D into small cylindrical wedges (Fig ??); Small wedge given by

$$
\left[r_{k}, r_{k}+\Delta r_{k}\right] \times\left[\theta_{k}, \theta_{k}+\Delta \theta_{k}\right] \times\left[z_{k}, z_{k}+\Delta z_{k}\right]
$$

has volume $\Delta V_{k}=\Delta A_{k} \Delta z_{k} \doteq r_{k} \Delta r_{k} \Delta \theta_{k} \Delta z_{k}$. So the sum $\sum_{k} f\left(x_{k}, y_{k}, z_{k}\right) \Delta V_{k}$ approaches

$$
\begin{equation*}
\iiint_{D} f(x, y, z) d x d y d z=\iiint_{D^{*}} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta . \tag{14.2}
\end{equation*}
$$

Here D^{*} is the region of described by the cylindrical coordinate (r, θ, z).

14.7.2 Integration in spherical coordinate system

We call (ρ, ϕ, θ) to be the spherical coordinate of $P(x, y, z)$ if
(1) ρ is the distance from P to the origin
(2) ϕ is the angle that makes with positive z axis
(3) θ is the angle from cylindrical coordinate.

Figure 14.10: Spherical coordinate

For the point $P(x, y, z)$ we have

$$
\text { Spherical to Cartesian }\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array} \quad\left(\begin{array}{c}
\rho \geq 0 \\
0 \leq \theta<2 \pi \\
0 \leq \phi \leq \pi
\end{array}\right)\right.
$$

Example 14.7.3. Express the surface (1) $x z=1$ and (2) $x^{2}+y^{2}-z^{2}=1$ in spherical coordinate.
sol. (1) Since $x z=\rho^{2} \sin \phi \cos \theta \cos \phi=1$, we have the equation

$$
\rho^{2} \sin 2 \phi \cos \phi=2 .
$$

(2) Since $x^{2}+y^{2}-z^{2}=x^{2}+y^{2}+z^{2}-2 z^{2}=\rho^{2}-2(\rho \cos \phi)^{2}=\rho^{2}\left(1-2 \cos ^{2} \phi\right)$, the equation is $\rho^{2}\left(1-2 \cos ^{2} \phi\right)=1$.

Volumes in Spherical Coordinate-Geometric Derivation

Consider the small region bounded by the following conditions: (Fig.??)

$$
\rho_{0} \leq \rho \leq \rho_{0}+\Delta \rho, \quad \phi_{0} \leq \phi \leq \phi_{0}+\Delta \phi, \quad \theta_{0} \leq \theta \leq \theta_{0}+\Delta \theta .
$$

14.7. TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATE13

The integral of f is defined as

$$
\begin{equation*}
\iiint_{D} f d V=\iiint f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta \tag{14.3}
\end{equation*}
$$

How to integrate in Spherical coordinates

Let D be the region determined by

$$
D=\left\{(\rho, \phi, \theta): g_{1}(\phi, \theta) \leq \rho \leq g_{2}(\phi, \theta), h_{1} \leq \phi \leq h_{2}, \alpha \leq \theta \leq \beta\right\}
$$

To evaluate $\iiint_{D} f d V=\iiint f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta$ we proceed as follows:
(1) Sketch the region D and project it onto $x y$ plane.
(2) Find the ρ limit of the integration $\left(g_{1}(\phi, \theta) \leq \rho \leq g_{2}(\phi, \theta)\right)$
(3) Find the ϕ limit of the integration $\left(h_{1}(\theta) \leq \phi \leq h_{2}(\theta)\right)$
(4) Find the θ limit of the integration

Example 14.7.4. Find the volume of the "ice cream cone" D cut from the solid $\rho \leq 1$ by the cone $\phi=\pi / 3$.

sol.

$$
\rho \leq 1, \phi \leq \pi / 3
$$

$$
\begin{aligned}
V & =\iiint_{D} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 3}\left[\frac{\rho^{3}}{3}\right]_{0}^{1} \sin \phi d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 3} \frac{1}{3} \sin \phi d \phi d \theta \\
& =\int_{0}^{2 \pi}\left[-\frac{1}{3} \cos \phi\right]_{0}^{\pi / 3} d \theta \\
& =2 \pi\left(-\frac{1}{6}+\frac{1}{3}\right)=\frac{\pi}{3}
\end{aligned}
$$

Example 14.7.5. Compute

$$
\iiint_{W} \exp \left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} d V
$$

where W is the unit ball.
sol. By spherical coordinate,

$$
\iiint_{W} \exp \left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} d V=\iiint_{W^{*}} \rho^{2} e^{\rho^{3}} \sin \phi d \theta d \phi d \rho .
$$

Changing it to an iterated integral, we have

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{\pi} \int_{0}^{2 \pi} \rho^{2} e^{\rho^{3}} \sin \phi d \theta d \phi d \rho \\
= & 2 \pi \int_{0}^{1} \int_{0}^{\pi} \rho^{2} e^{\rho^{3}} \sin \phi d \phi d \rho \\
= & 4 \pi \int_{0}^{1} \rho^{2} e^{\rho^{3}} d \rho=\frac{4}{3} \pi(e-1) .
\end{aligned}
$$

14.8 Substitution-Change of variables

Let $F(u, v)=f(x(u, v), y(u, v))$ and recalling the definition of integral, we see

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \Delta A_{i}(x, y)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} F\left(u_{i}, v_{i}\right) \Delta A_{i}(u, v) . \tag{14.4}
\end{equation*}
$$

One-to-one map and onto map

Example 14.8.1. Let D be the region in the first quadrant lying between concentric circles $r=a, r=b$ and $\theta_{1} \leq \theta \leq \theta_{2}$. (Fig. ??) Let

$$
T(r, \theta)=(r \cos \theta, r \sin \theta)
$$

be the polar coordinate map. Find a region D^{*} in (r, θ) coordinate plane such that $D=T\left(D^{*}\right)$.
sol. In D, we see

$$
a \leq r \leq b, \quad \theta_{1} \leq \theta \leq \theta_{2} .
$$

Hence

$$
D^{*}=[a, b] \times\left[\theta_{1}, \theta_{2}\right] .
$$

Figure 14.11: Inverse image of a polar rectangle

Coordinate transformations

Let D^{*} be a region in \mathbb{R}^{2}. Suppose T is C^{1}-map $D^{*} \rightarrow \mathbb{R}^{2}$. We denote the image by $D=T\left(D^{*}\right)$. (Fig ??)

$$
T\left(D^{*}\right)=\left\{(x, y) \mid(x, y)=T(u, v), \quad(u, v) \in D^{*}\right\} .
$$

Figure 14.12: The transformation T maps D^{*} to D

Jacobian Determinant-measures change of area

We first see how the area of a region changes under a linear map. Let $D^{*}=$ $[0,1] \times[0,1]$, and construct a linear map T that maps D^{*} onto a parallelogram D. Consider the vector $\mathbf{c}_{1}:=\mathbf{a}_{2}-\mathbf{a}_{1}, \mathbf{c}_{2}:=\mathbf{a}_{4}-\mathbf{a}_{1}$, and set (one may assume $\mathrm{a}_{1}=0$)

$$
T(u, v)=\mathbf{c}_{1} u+\mathbf{c}_{2} v .
$$

Figure 14.13: The image of a rectangle under a linear $\operatorname{transform} T$

The two tangent vectors to D at the origin are

$$
\begin{aligned}
& T_{u}=\mathbf{a}_{2} \\
& T_{v}=\mathbf{a}_{4} .
\end{aligned}
$$

The area of the parallelogram D is

$$
\operatorname{Area}(D)=\left\|\left(\mathbf{a}_{2}-\mathbf{a}_{1}\right) \times\left(\mathbf{a}_{4}-\mathbf{a}_{1}\right)\right\|=|J|,
$$

where

$$
J=\frac{\partial(x, y)}{\partial(u, v)}:=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=|D T| .
$$

J is called the Jacobian of T.
Thus for the area change, we have
Theorem 14.8.2. Let A be a 2×2 matrix with non zero determinant. Let T be a linear transformation given by $T(\mathbf{x})=A \mathbf{x}$. Then T maps a parallelogram D^{*} onto the parallelogram $D=T\left(D^{*}\right)$ and

$$
\text { Area of } D=|\operatorname{det} A| \cdot\left(\text { Area of } D^{*}\right) \text {. }
$$

Example 14.8.3. Let T be $((x+y) / 2,(x-y) / 2)$ and let D be the square whose vertices are $(1,0),(0,1),(-1,0),(0,-1)$. Find a D^{*} such that $D=T\left(D^{*}\right)$.
sol. Since T is linear $T(\mathbf{x})=A \mathbf{x}$ where A is 2×2 matrix whose determinant is nonzero. T^{-1} is also a linear transform. Hence by Theorem ??, D^{*} must be a parallelogram. To find D^{*}, it suffices to find the inverse image of vertices. It turns out that

$$
D^{*}=[-1,1] \times[-1,1] .
$$

Now

$$
A(D)=(\sqrt{2})^{2}=2,|\operatorname{det} A|=\frac{1}{2}, A\left(D^{*}\right)=4, .
$$

Change of variable in the definite integrals

Let $D=T\left(D^{*}\right)$, where

$$
T(u, v)=(x(u, v), y(u, v)) \text { for }(u, v) \in D^{*} .
$$

Then we have

$$
\begin{equation*}
\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(T(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{14.5}
\end{equation*}
$$

Example 14.8.4. Evaluate

$$
\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x
$$

sol. Let us use the substitution $u=x+y, v=y-2 x$, so that

$$
\begin{equation*}
x=\frac{u}{3}-\frac{v}{3}, \quad y=\frac{2 u}{3}+\frac{v}{3} . \tag{14.6}
\end{equation*}
$$

One can find the limits of integration and find $J(u, v)=\frac{1}{3}$. To find the limit of integration, we see Figure ??. and Table ??.

Table 14.1: Limit of integration for Example ??

$x y$ eq. for boundary	$u v$ eq. for boundary	Simplified
$x+y=1$	$\frac{u-v}{3}+\frac{2 u+v}{3}=0$	$u=1$
$x=0$	$\frac{u}{3}-\frac{v}{3}=0$	$v=u$
$y=0$	$\frac{2 u+v}{3}=0$	$v=-2 u$

Figure 14.14: Change of variables for Example ??

Hence we obtain

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1-x} \sqrt{x+y}(y-2 x)^{2} d y d x & =\int_{0}^{1} \int_{v=-2 u}^{v=u} \sqrt{u} v^{2}|J(u, v)| d v d u \\
& =\frac{1}{3} \int_{0}^{1} \sqrt{u}\left[\frac{v^{3}}{3}\right]_{-2 u}^{u} d u \\
& =\frac{1}{9} \int_{0}^{1} \sqrt{u}\left(u^{3}+8 u^{3}\right) d u \\
& =\int_{0}^{1} u^{7 / 2} d u=\frac{2}{9}
\end{aligned}
$$

Example 14.8.5. Evaluate

$$
\int_{1}^{2} \int_{1 / y}^{y} \sqrt{\frac{y}{x}} e^{\sqrt{x y}} d x d y
$$

sol. We use the substitution $u=\sqrt{x y}, v=\sqrt{\frac{y}{x}}$, so that

$$
\begin{equation*}
x=\frac{u}{v}, \quad y=u v, u, v>0 . \tag{14.7}
\end{equation*}
$$

We see

$$
J(u, v)=\left|\begin{array}{cc}
\frac{1}{v} & -\frac{u}{v^{2}} \\
v & u
\end{array}\right|=\frac{2 u}{v} .
$$

Figure 14.15: Change of variables for Example ??

Table 14.2: Limit of integration for Example ??

$x y$ eq. for boundary	$u v$ eq. for boundary	Simplified
$y=x$	$u v=\frac{u}{v}$	$v=1(u>0)$
$x y=1$	$u=1$	$u=1$
$y=2$	$u=\sqrt{2 x}, v=\sqrt{\frac{2}{x}}$	$u v=2$

(Note that if we integrate w.r.t u first, we run into trouble!) Once we find the limits of integration(need the region D and D^{*}) from Table ??, we obtain

$$
\begin{aligned}
\iint_{R} \sqrt{\frac{y}{x}} e^{\sqrt{x y}} d x d y & =\iint_{R} v e^{u} \frac{2 u}{v} d u d v \\
& =\int_{1}^{2} \int_{1}^{2 / u} 2 u e^{u} d v d u \\
& =2 \int_{1}^{2}\left[v u e^{u}\right]_{v=1}^{v=2 / u} d u \\
& =2 \int_{0}^{1}\left(2 e^{u}-u e^{u}\right) d u \\
& =2\left[\left(2 e^{u}-u e^{u}\right)+e^{u}\right]_{u=1}^{u=2}=2 e(e-2)
\end{aligned}
$$

Change of variable formula - general case

Let T be a differentiable mapping from a subset of \mathbb{R}^{2} to \mathbb{R}^{2}. Let $D^{*}=$ $\left[u_{0}, u_{0}+\Delta u\right] \times\left[v_{0}, v_{0}+\Delta v\right]$ and D be the image of D^{*} under T. Consider

$$
T(u, v)=\left[\begin{array}{l}
x \tag{14.8}\\
y
\end{array}\right]=\left[\begin{array}{l}
x\left(u_{0}, v_{0}\right)+\frac{\partial x}{\partial u}\left(u_{0}, v_{0}\right) \Delta u+\frac{\partial x}{\partial v}\left(u_{0}, v_{0}\right) \Delta v+h . o . t \\
y\left(u_{0}, v_{0}\right)+\frac{\partial y}{\partial u}\left(u_{0}, v_{0}\right) \Delta u+\frac{\partial y}{\partial v}\left(u_{0}, v_{0}\right) \Delta v+h . o . t
\end{array}\right]
$$

or in vector form, we have

$$
T\left[\begin{array}{l}
u \\
v
\end{array}\right]=\mathbf{X}=\mathbf{X}_{0}+D T\left[\begin{array}{l}
\Delta u \\
\Delta v
\end{array}\right]+\text { h.o.t }
$$

and replace the map T by its linear part $D T$.

Geometric meaning of $D T$

Let

$$
T_{u}:=D T(u, v)\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial x}{\partial u} \\
\frac{\partial y}{\partial u}
\end{array}\right]
$$

and

$$
T_{v}:=D T(u, v)\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial v}
\end{array}\right] .
$$

Now the two tangent vectors $T_{u} \Delta u, \quad T_{v} \Delta v$ form a parallelogram approximating the region D (Figure ??). Hence the area of the parallelogram is

$$
\begin{aligned}
\left|\begin{array}{ll}
\frac{\partial x}{\partial u} \Delta u & \frac{\partial x}{\partial v} \Delta v \\
\frac{\partial y}{\partial u} \Delta u & \frac{\partial y}{\partial v} \Delta v
\end{array}\right|= & \left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \Delta u \Delta v=\frac{\partial(x, y)}{\partial(u, v)} \Delta u \Delta v \doteq J \cdot A\left(D^{*}\right) . \\
& \left\|T_{u} \times T_{v}\right\| \Delta u \Delta v=|J| \Delta u \Delta v .
\end{aligned}
$$

Summing over all subregions and taking the limit as $\Delta u, \Delta v \rightarrow 0$ we obtain the formula.

Change of Variables in Triple Integrals

Definition 14.8.6. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by

$$
T(u, v, w)=(x(u, v, w), y(u, v, w), z(u, v, w))
$$

Figure 14.16: approximate $T\left(D^{*}\right)$

The the Jacobian J is again, as 2D case, the determinant of the derivative DT

$$
J=\frac{\partial(x, y, z)}{\partial(u, v, w)}=\operatorname{det}\left[\begin{array}{lll}
\frac{\partial x}{\partial u}, & \frac{\partial x}{\partial v}, & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u}, & \frac{\partial y}{\partial v}, & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u}, & \frac{\partial z}{\partial v}, & \frac{\partial z}{\partial w}
\end{array}\right] .
$$

The absolute value of this determinant is equal to the volume of parallelepiped determ'd by the following vectors

$$
\begin{aligned}
\mathbf{T}_{u} & =\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\frac{\partial z}{\partial u} \mathbf{k} \\
\mathbf{T}_{v} & =\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\frac{\partial z}{\partial v} \mathbf{k} \\
\mathbf{T}_{w} & =\frac{\partial x}{\partial w} \mathbf{i}+\frac{\partial y}{\partial w} \mathbf{j}+\frac{\partial z}{\partial w} \mathbf{k}
\end{aligned}
$$

which is the absolute value of the triple product (recall Chap. 12.4)

$$
\left|\left(\mathbf{T}_{u} \times \mathbf{T}_{v}\right) \cdot \mathbf{T}_{w}\right|=|J|
$$

Caution: Three vectors $\mathbf{T}_{u}, \mathbf{T}_{v}, \mathbf{T}_{w}$ are column vectors of $D T$, but since $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ for any square matrix, we have

$$
J=\frac{\partial(x, y, z)}{\partial(u, v, w)}=\operatorname{det}\left[\begin{array}{lll}
\mathbf{T}_{u}, & \mathbf{T}_{v}, & \mathbf{T}_{w}
\end{array}\right]
$$

Theorem 14.8.7. If T is a \mathcal{C}^{1} - map from D^{*} onto D in \mathbb{R}^{3} and $f: D \subset$

$$
T=\left(\begin{array}{c}
-1.5 u-0.2 v-0.1 u v+0.2 w^{2} \\
-0.1 u+0.7 v+0.1 w \\
w+0.1 u v-0.1 u^{2}-0.2 v^{2}
\end{array}\right)
$$

Figure 14.17: Deformed box and parallelepiped generated by tangent vectors.
$\mathbb{R}^{3} \rightarrow \mathbb{R}$ is continuous, then

$$
\begin{align*}
\iiint_{D} d x d y d z & =\iiint_{D^{*}}|J| d u d v d w \tag{14.9}\\
\iiint_{D} f(x, y, z) d x d y d z & =\iiint_{D^{*}} f(T(u, v, w))|J| d u d v d w \tag{14.10}
\end{align*}
$$

Example 14.8.8. Evaluate

$$
\int_{0}^{3} \int_{0}^{4} \int_{y / 2}^{y / 2+1}\left(\frac{2 x-y}{2}+\frac{z}{3}\right) d x d y d z
$$

using the transformation

$$
\begin{equation*}
u=(2 x-y) / 2, \quad v=y / 2, \quad w=z / 3 . \tag{14.11}
\end{equation*}
$$

sol. We see

$$
\begin{equation*}
x=u+v, \quad y=2 v, \quad z=3 w . \tag{14.12}
\end{equation*}
$$

We see

$$
J(u, v)=\left|\begin{array}{lll}
\frac{\partial x}{\partial u}, & \frac{\partial x}{\partial v}, & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}, & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u}, & \frac{\partial z}{\partial v}, & \frac{\partial z}{\partial w}
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right|=6 .
$$

One can find the limits of integration we obtain

Table 14.3: Limit of integration for Example ??

$x y z$ eq. for boundary	$u v w$ eq. for boundary	Simplified eq.
$x=y / 2$	$u+v=2 v / 2$	$u=0$
$x=y / 2+1$	$u+v=2 v / 2+1$	$u=1$
$y=0$	$2 v=0$	$v=0$
$y=4$	$2 v=4$	$v=2$
$z=0$	$3 w=0$	$w=0$
$z=3$	$3 w=3$	$w=1$

$$
\begin{aligned}
\iiint_{D} f d x d y d z & =\int_{0}^{1} \int_{0}^{2} \int_{0}^{1}(u+w)|J| d u d v d w \\
& =6 \int_{0}^{1} \int_{0}^{2}\left[\frac{u^{2}}{2}+u w\right]_{0}^{1} d v d w \\
& =6 \int_{0}^{1} \int_{0}^{2}\left(\frac{1}{2}+w\right) d v d w \\
& =6 \int_{0}^{1}(1+2 w) d w=12
\end{aligned}
$$

Spherical Coordinate - revisited

Example 14.8.9. Derive the integration formula in spherical coordinate using Theorem ??.
sol. Spherical coordinate is given by

$$
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi
$$

The Jacobian of the mapping $(\rho, \phi, \theta) \rightarrow(x, y, z)$ is

$$
\begin{aligned}
\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)} & =\left|\begin{array}{lll}
\frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \theta} \\
\frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \theta}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
\sin \phi \cos \theta & \rho \cos \phi \cos \theta & -\rho \sin \phi \sin \theta \\
\sin \phi \sin \theta & \rho \cos \phi \sin \theta & \rho \sin \phi \cos \theta \\
\cos \phi & -\rho \sin \phi & 0
\end{array}\right| \\
& =\rho^{2} \sin \phi\left(\cos ^{2} \phi+\sin ^{2} \phi\right)=\rho^{2} \sin \phi .
\end{aligned}
$$

Hence

$$
\iiint_{D} f(x, y, z) d x d y d z=\iiint_{D^{*}} F(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta .
$$

Here $F(\rho, \phi, \theta)$ means $f(x(\rho, \phi, \theta), y(\rho, \phi, \theta), z(\rho, \phi, \theta))$.

Chapter 15

Integral of Vector Fields

15.1 Line Integrals

Line integral(Path integral) of a scalar function

Let C be a C^{1} - curve $\mathbf{x}(t)=\mathbf{r}(t)=(x(t), y(t), z(t)):[a, b] \rightarrow C \subset \mathbb{R}^{3}$. Let $P: a=t_{0}<t_{1}<\cdots<t_{k}=b$ be the partition of $[a, b]$. Then the Riemann sum of $f: C \rightarrow \mathbb{R}$ is

$$
\sum_{i=1}^{k} f\left(\mathbf{x}\left(t_{i}^{*}\right)\right) \Delta s_{i}=\sum_{i=1}^{k} f\left(\mathbf{x}\left(t_{i}^{*}\right)\right)\left\|\mathbf{x}\left(t_{i}\right)-\mathbf{x}\left(t_{i-1}\right)\right\|=\sum_{i=1}^{k} f\left(\mathbf{x}\left(t_{i}^{*}\right)\right) \Delta s_{i} .
$$

Definition 15.1.1. We define the line integral of f over C as:

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(g(t), h(t), k(t))\|\mathbf{v}(t)\| d t=\int_{a}^{b} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t .
$$

Here $s(t)$ is the arc length parameter:

$$
s(t)=\int_{0}^{t}\|\mathbf{v}(\tau)\| d \tau
$$

Example 15.1.2. Find path integral of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ over C where

$$
\mathbf{x}(t)=(\cos t, \sin t, t), \quad t \in[0,2 \pi] .
$$

sol. Since $\mathbf{x}^{\prime}(t)=(-\sin t, \cos t, 1)$, the line integral is

$$
\begin{aligned}
\int_{C} f d s & =\int_{0}^{2 \pi} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t \\
& =\int_{0}^{2 \pi}\left(\cos ^{2} t+\sin ^{2} t+t^{2}\right)\|(-\sin t, \cos t, 1)\| d t \\
& =\int_{0}^{2 \pi}\left(1+t^{2}\right) \sqrt{2} d t \\
& =\sqrt{2}\left(2 \pi+8 \pi^{3} / 3\right) .
\end{aligned}
$$

Mass and Moment of a wire

Imagine coils or springs and wires as masses distributed along smooth curves in space.

When a curve C is parameterized by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, a \leq t \leq b$, the density of wire is $\delta(x(t), y(t), z(t))$.

$$
\begin{aligned}
& M=\int_{C} \delta d s \\
& M_{y z}=\int_{C} x \delta d s \\
& M_{z x}=\int_{C} y \delta d s \\
& M_{x y}=\int_{C} z \delta d s \\
& \bar{x}=\frac{M_{y z}}{M}, \quad \bar{y}=\frac{M_{z x}}{M}, \bar{z}=\frac{M_{x y}}{M} . \\
& \text { moment of inertia about the axis and the line } L \\
& I_{x}=\int_{C}\left(y^{2}+z^{2}\right) \delta d s, I_{y}=\int_{C}\left(x^{2}+z^{2}\right) \delta d s, I_{z}=\int_{C}\left(x^{2}+y^{2}\right) \delta d s, I_{L}=\int_{C} r^{2} \delta d s .
\end{aligned}
$$

15.2 Line integral of Vector fields: Work, Circulation and Flux

Vector fields, Gradient fields and potentials

Given real C^{1} - function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we define the gradient field by

$$
\nabla f:=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) .
$$

f is called the potential function.

Line Integrals of Vector Fields

The Rieman sum of a vector field along a curve is a work defined by

$$
\sum_{i=0}^{n-1} \mathbf{F}\left(\mathbf{x}\left(t_{i}^{*}\right)\right) \cdot \Delta \mathbf{x}_{i}=\sum_{i=0}^{n-1} \mathbf{F}\left(\mathbf{x}\left(t_{i}\right)\right) \cdot\left[\mathbf{x}\left(t_{i}+\Delta t\right)-\mathbf{x}\left(t_{i}\right)\right] .
$$

Taking the limit

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \mathbf{F}\left(\mathbf{x}\left(t_{i}^{*}\right)\right) \cdot \Delta \mathbf{x}_{i} & =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \mathbf{F}\left(\mathbf{x}\left(t_{i}\right)\right) \cdot \frac{\Delta \mathbf{x}_{i}}{\Delta t} \Delta t \\
& =\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t
\end{aligned} \begin{aligned}
\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t & =\int_{a}^{b}\left[\mathbf{F}(\mathbf{x}(t)) \cdot \frac{\mathbf{x}^{\prime}(t)}{\left\|\mathbf{x}^{\prime}(t)\right\|}\right]\left\|\mathbf{x}^{\prime}(t)\right\| d t \\
& =\int_{a}^{b}[\mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{T}(t)]\left\|\mathbf{x}^{\prime}(t)\right\| d t \\
& =\int_{C}(\mathbf{F} \cdot \mathbf{T}) d s \equiv \int_{C} \mathbf{F} \cdot d \mathbf{x}
\end{aligned}
$$

Line integral with resp. to $d x, d y$ or $d z$

Suppose the vector field

$$
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}
$$

is given and

$$
\mathbf{r}(t) \equiv \mathbf{x}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, a \leq t \leq b
$$

is a smooth curve. Then recalling $\mathbf{r}^{\prime}(t)=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}+\frac{d z}{d t} \mathbf{k}$, we see

$$
\begin{equation*}
\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot d \mathbf{r}=\int_{a}^{b}(M, N, P) \cdot\left(\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right) d t=\int_{C} M d x+N d y+P d z \tag{15.1}
\end{equation*}
$$

Flow integrals and circulation of velocity fields
Definition 15.2.1. If \mathbf{F} is a continuous vector field and \mathbf{T} is unit tangent vector on C, then the flow of \mathbf{F} along C is

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

If the curve is closed, then the flow is called the circulation of \mathbf{F} along C.

Example 15.2.2. Let $\mathbf{F}(x, y, z)=x \mathbf{i}+z \mathbf{j}+y \mathbf{k}$. Find the flow of \mathbf{F} along the helix $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}, 0 \leq t \leq \pi / 2$.
sol.

$$
\begin{gathered}
\frac{d \mathbf{r}}{d t}=(-\sin t, \cos t, 1) . \\
\int_{C} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t}=\int_{0}^{\pi / 2}(-\sin t \cos t+t \cos t+\sin t) d t \\
=\left[\frac{\cos ^{2} t}{2}+t \sin t\right]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}-\frac{1}{2} .
\end{gathered}
$$

Flux across a simple closed plane curve
Definition 15.2.3. If C is a smooth simple closed curve in the domain of a continuous vector field \mathbf{F} and \mathbf{n} is unit outward normal vector on C, the flux of \mathbf{F} across C is

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s .
$$

Calculating flux across a simple closed plane curve:

Let $(x(t), y(t))$ be a parametrization of C and $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$. Then the unit tangent vector is $\mathbf{T}=\frac{d x}{d s} \mathbf{i}+\frac{d y}{d s} \mathbf{j}$, and unit normal vector is

$$
\mathbf{n}=\frac{d y}{d s} \mathbf{i}-\frac{d x}{d s} \mathbf{j} .
$$

Hence the flux is

Figure 15.1: Outward normal $\mathbf{n}=\mathbf{t} \times \mathbf{k}$ directs the rhs of a walking man

$$
\begin{equation*}
\int_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{C}\left(M \frac{d y}{d s}-N \frac{d x}{d s}\right) d s=\oint_{C} M d y-N d x \tag{15.2}
\end{equation*}
$$

Example 15.2.4. Find the flux of $\mathbf{F}(x, y, z)=(x-y) \mathbf{i}+x \mathbf{j}$ along the circle $x^{2}+y^{2}=1$. $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}(0 \leq t \leq 2 \pi)$.
sol. We see $\frac{d \mathbf{r}}{d t}=(-\sin t, \cos t)$. Hence

$$
d y=\cos t, \quad d x=\sin t
$$

Since

$$
M=x-y=\cos t-\sin t, \quad N=x=\cos t
$$

we see the flux is

$$
\begin{aligned}
\int_{C} M d y-N d x & =\int_{0}^{2 \pi}\left(\cos ^{2} t-\sin t \cos t+\sin t \cos t\right) d t \\
& =\int_{0}^{2 \pi} \cos ^{2} t d t=\int_{0}^{2 \pi} \frac{1+\cos 2 t}{2} d t \\
& =\left[\frac{t}{2}+\frac{\sin 2 t}{4}\right]_{0}^{2 \pi}=\pi
\end{aligned}
$$

Figure 15.2: Two curves having the same end points

15.3 Path independence, conservative vector fields

Definition 15.3.1. A line integral a vector field \mathbf{F} is called path independent if

$$
\begin{equation*}
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r} \tag{15.3}
\end{equation*}
$$

for any two oriented curves C_{1}, C_{2} lying in the domain of \mathbf{F} having same end points. The field is called conservative.

A vector field \mathbf{F} is called a gradient vector field if $\mathbf{F}=\nabla f$ for some real valued function f. Thus

$$
\mathbf{F}=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k} .
$$

The function f is called a potential of \mathbf{F}.
Example 15.3.2. A gravitational force field has the potential function $f=$ $\frac{G m M}{r}\left(\mathbf{r}=(x, y, z), r=\sqrt{x^{2}+y^{2}+z^{2}}\right)$.

$$
\mathbf{F}=-\frac{G m M}{r^{3}} \mathbf{r}=\nabla f .
$$

sol. We take derivative of $r^{2}=x^{2}+y^{2}+z^{2}$, i.e., $2 r \frac{\partial r}{\partial x}=2 x, 2 r \frac{\partial r}{\partial y}=$ $2 y, 2 r \frac{\partial r}{\partial z}=2 z$. Thus

$$
\nabla f=-\frac{G m M}{r^{2}}\left(\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial r}{\partial z}\right)=-\frac{G m M}{r^{3}} \mathbf{r} .
$$

Theorem 15.3.3. Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is class C^{1} and $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{3}$ is smooth curve C and \mathbf{F} is a continuous gradient field such that $\mathbf{F}=\nabla f$. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{a}^{b} \frac{d}{d t} f(\mathbf{r}(t)) d t=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

In other words, the gradient field is conservative.
Definition 15.3.4. A region R in \mathbb{R}^{2} or \mathbb{R}^{3} is called simply connected if every closed curve C in R can be continuously shrunk to a point (contractible) while remaining in R throughout the deformation.

Curl of a vector field in \mathbb{R}^{3}

If $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}=\left(F_{1}, F_{2}, F_{3}\right)$, then $\nabla \times \mathbf{F}(\equiv \mathbf{c u r l} \mathbf{F})$ is defined as $\nabla \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P\end{array}\right|=\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}+\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}$

Theorem 15.3.5. (Conservative Field) Let \mathbf{F} be a \mathcal{C}^{1}-vector field on a simply connected domain in \mathbb{R}^{3}. Then the following conditions are equivalent:
(1) For any oriented closed curve $C, \int_{C} \mathbf{F} \cdot d \mathbf{x}=0$.
(2) For any two oriented curve C_{1}, C_{2} having same end points,

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{x}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{x} .
$$

(3) \mathbf{F} is the gradient of some function f, i.e, $\mathbf{F}=\nabla f$.
(4) $\nabla \times \mathbf{F}=\mathbf{0}$.

Component test for conservative field

If a field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is conservative on a simply connected domain, then by above Theorem, there exists some function f s.t.

$$
\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

Hence we can check the following holds: (by taking the derivative)

$$
\begin{equation*}
\frac{\partial P}{\partial y}=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x} \text { and } \quad \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} . \tag{15.4}
\end{equation*}
$$

Example 15.3.6. Show that the vector field is conservative and find its potential.

$$
\mathbf{F}(x, y, z)=\left(e^{x} \sin y-y z\right) \mathbf{i}+\left(e^{x} \cos y-x z\right) \mathbf{j}+(z-x y) \mathbf{k} .
$$

sol. One can check (??) or check if the curl \mathbf{F} is zero:

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x} \sin y-y z & e^{x} \cos y-x z & z-x y
\end{array}\right| \\
& =\left(\frac{\partial}{\partial y}(z-x y)-\frac{\partial}{\partial z}\left(e^{x} \cos y-x z\right)\right) \mathbf{i}+\left(\frac{\partial}{\partial z}\left(e^{x} \sin y-y z\right)-\frac{\partial}{\partial x}(z-x y)\right) \mathbf{j} \\
& +\left(\frac{\partial}{\partial x}\left(e^{x} \cos y-x z\right)-\frac{\partial}{\partial y}\left(e^{x} \sin y-y z\right)\right) \mathbf{k}=\mathbf{0} .
\end{aligned}
$$

So the condition (??) holds. To find a potential we need to find and f satisfying

$$
\begin{equation*}
\frac{\partial f}{\partial x}=e^{x} \sin y-y z, \quad \frac{\partial f}{\partial y}=e^{x} \cos y-x z, \quad \frac{\partial f}{\partial z}=z-x y \tag{15.5}
\end{equation*}
$$

Thus we proceed as follows: First integrate w.r.t x.
(1) $f(x, y, z)=\int\left(e^{x} \sin y-y z\right) d x=e^{x} \sin y-x y z+g(y, z)$ for some $g(y, z)$.
(2) $\frac{\partial f}{\partial y}=e^{x} \cos y-x z+\frac{\partial g}{\partial y}=e^{x} \cos y-x z$. Thus $g(y, z)$ is a function of z only, thus $g=g(z)$. Taking derivative of f w.r.t z, we have
(3) $\frac{\partial f}{\partial z}=-x y+g^{\prime}(z)=z-x y$. Thus $g(z)=\frac{1}{2} z^{2}+C$.
(4) Hence $f(x, y, z)=e^{x} \sin y-x y z+\frac{1}{2} z^{2}+C$.

Exact differential form

The expression $F_{1} d x+F_{2} d y+F_{3} d z$ is called a differential form. We can compute the line integral of a differential form as

$$
\int_{C} F_{1} d x+F_{2} d y+F_{3} d z=\int_{a}^{b}\left(F_{1} x^{\prime}(t)+F_{2} y^{\prime}(t)+F_{3} z^{\prime}(t)\right) d t .
$$

Definition 15.3.7. A differential form is said to be exact if it has the form

$$
M d x+N d y+P d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z \equiv d f=\nabla f \cdot d \mathbf{x} .
$$

for some scalar function f.

Component test for exactness

The differential form is exact if and only if (following Theorem ??)

$$
\begin{equation*}
\frac{\partial P}{\partial y}=\frac{\partial N}{\partial z}, \quad \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x} \text { and } \quad \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} . \tag{15.6}
\end{equation*}
$$

This is a consequence of Theorem ?? for conservative field.
Example 15.3.8. Find the potential of the vector field if it is conservative.

$$
\mathbf{F}(x, y)=(2 x y+\cos 2 y) \mathbf{i}+\left(x^{2}-2 x \sin 2 y\right) \mathbf{j} .
$$

sol.

First we check that $\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}$. Hence it is conservative. Let f be the potential function. Then it satisfies $\nabla f=\mathbf{F}$, i.e.,

$$
\begin{equation*}
\frac{\partial f}{\partial x}=2 x y+\cos 2 y, \quad \frac{\partial f}{\partial y}=x^{2}-2 x \sin 2 y . \tag{15.7}
\end{equation*}
$$

Thus we proceed as follows:
(1) Integrate: $f(x, y)=\int \frac{\partial f}{\partial x} d x=\int 2 x y+\cos 2 y d x=x^{2} y+x \cos 2 y+g(y)$
(2) Set $\frac{\partial f}{\partial y}=x^{2}-2 x \sin 2 y+g^{\prime}(y)$
(3) Show $g(x, y)=C$.

Thus we see $f(x, y)=x^{2}-2 x \sin 2 y+C$.

Example 15.3.9. Show the form $y d x+x d y+4 d z$ is exact and evaluate the integral

$$
\int_{C} y d x+x d y+4 d z
$$

sol. ...

15.4 Green's Theorem in the plane

Circulation and flux

(1) The circulation rate measures the spin of the fluid around a closed curve, which is given $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\oint_{C} M d x+N d y$.
(2) The flux rate measures the rate at which the fluid leaves out of the closed curve, which is given $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s=\oint_{C} M d y-N d x$.

$$
\begin{aligned}
\oint_{C} M d x+N d y & =\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y \\
\oint_{C} M d y-N d x & =\iint_{R}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y
\end{aligned}
$$

Relation with 3D curl

If $\mathbf{F}=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ is two dimensional vector field, then it can be considered as a three dimensional vector field as $\mathbf{F}=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}+0 \cdot \mathbf{k}$. The curl \mathbf{F} can be computed :

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}+\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k} \\
& =\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}
\end{aligned}
$$

Definition 15.4.1. The circulation density of \mathbf{F} is the expression $\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}$, also called the \mathbf{k} - component of the curl denoted by $(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k}$.

Physical meaning:
(1) The integral of a circulation around a closed curve is the same as the integral of the curl of \mathbf{F} on the region enclosed by the curve.
(2) Normal component of $\operatorname{curl} \mathbf{F}$ is the rate of rotation along the plane.

Green's Theorem

Figure 15.3: As type 1 region and boundary

Theorem 15.4.2. (Green's theorem: Circulation-Curl form) Let D be a closed bounded, region in \mathbb{R}^{2} with boundary ∂D Then

$$
\oint_{\partial D} \mathbf{F} \cdot \mathbf{T} d s=\oint_{\partial D} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

> The integral of the circulation around a ∂D is the integral of $\mathbf{c u r l} \mathbf{F} \cdot \mathbf{k}$ on D.

Proof. Assume D is a region of type 1 given as follows:

$$
D=\left\{(x, y) \mid a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)\right\}
$$

We decompose the boundary of D as $\partial D=C_{1}^{+}+C_{2}^{-}($fig $? ?)$. Using the

Fubini's theorem, we can evaluate the double integral as an iterated integral

$$
\begin{aligned}
\iint_{D}-\frac{\partial M(x, y)}{\partial y} d x d y & =\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)}-\frac{\partial M(x, y)}{\partial y} d y d x \\
& =\int_{a}^{b}\left[M\left(x, \phi_{1}(x)\right)-M\left(x, \phi_{2}(x)\right)\right] d x
\end{aligned}
$$

On the other hand, C_{1}^{+}can be parameterized as $x \rightarrow\left(x, \phi_{1}(x)\right), a \leq x \leq b$ and C_{2}^{+}can be parameterized as $x \rightarrow\left(x, \phi_{2}(x)\right), a \leq x \leq b$. Hence

$$
\int_{a}^{b} M\left(x, \phi_{i}(x)\right) d x=\int_{C_{i}^{+}} M(x, y) d x, \quad i=1,2 .
$$

By reversing orientations

$$
-\int_{a}^{b} M\left(x, \phi_{2}(x)\right) d x=\int_{C_{2}^{-}} M(x, y) d x
$$

Hence

$$
\iint_{D}-\frac{\partial M}{\partial y} d x d y=\int_{C_{1}^{+}} M d x+\int_{C_{2}^{-}} M d x=\int_{\partial D} M d x
$$

Similarly if D is a region of type 2 , one can show that

$$
\iint_{D} \frac{\partial N}{\partial x} d x d y=\int_{C_{1}^{+}} N d y+\int_{C_{2}^{-}} N d y=\int_{\partial D} N d y
$$

Here C_{1} and C_{2} are the curves defined by $x=\psi_{1}(y)$ and $x=\psi_{2}(y)$ for $c \leq y \leq d$. The proof is completed.

Theorem 15.4.3. (Green's theorem: Flux-Divergence form) Let D be a closed bounded, region in \mathbb{R}^{2} with boundary $C=\partial D$ with positive orientation.

Suppose $\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}$ be a vector field of class \mathcal{C}^{1}. Then

$$
\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} d s=\oint_{\partial D} M d y-N d x=\iint_{D}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y
$$

> The integral of the outward flux around a $\partial D=$ the integral of $\operatorname{div} \mathbf{F}$ on D.

Example 15.4.4. Verify Green's theorem for

$$
M(x, y)=\frac{-y}{x^{2}+y^{2}}, \quad N(x, y)=\frac{x}{x^{2}+y^{2}}
$$

Figure 15.4: Apply Green's theorem to each of the regions
on $D=\left\{(x, y) \mid h^{2} \leq x^{2}+y^{2} \leq 1\right\}, 0<h<1$.

Figure 15.5: Domains for Example ?? and Example ??
sol. The boundary of D consists of two circles.

$$
\begin{array}{lll}
C_{1}: x=\cos t, & y=\sin t, & 0 \leq t \leq 2 \pi \\
C_{h}: x=h \cos t, & y=h \sin t, & 0 \leq t \leq 2 \pi
\end{array}
$$

In the curve $\partial D=C_{h} \cup C_{1}, C_{1}$ is oriented counterclockwise while C_{h} is oriented clockwise. Since M, N are class \mathcal{C}^{1} in the annuls D, we can use Green's theorem. Since

$$
\frac{\partial M}{\partial y}=\frac{\left(x^{2}+y^{2}\right)(-1)+2 y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial N}{\partial x}
$$

we have

$$
\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\int_{D} 0 d x d y=0
$$

On the other hand,

$$
\begin{aligned}
\int_{\partial D} M d x+N d y & =\int_{C_{1}} \frac{x d y-y d x}{x^{2}+y^{2}}+\int_{C_{h}} \frac{x d y-y d x}{x^{2}+y^{2}} \\
& =\int_{0}^{2 \pi}\left(\cos ^{2} t+\sin ^{2} t\right) d t+\int_{2 \pi}^{0} \frac{h^{2}\left(\cos ^{2} t+\sin ^{2} t\right)}{h^{2}} d t \\
& =2 \pi-2 \pi=0 .
\end{aligned}
$$

Hence

$$
\int_{\partial D} M d x+N d y=0=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Example 15.4.5. Evaluate $\int_{C} \frac{x d y-y d x}{x^{2}+y^{2}}$ where C_{*} is any closed curve around the origin.
sol. Since the integrand is not continuous at $(0,0)$, we cannot use Green's theorem on the interior of C_{*}. But if we remove a small circle of radius h around the origin, we can use the Green's theorem on the region bounded by C_{*} and C_{h} (Fig ??) as in the previous example to see

$$
\int_{C_{*}} M d x+N d y=-\int_{C_{h}} M d x+N d y .
$$

Now the integral $-\int_{C_{h}}(M d x+N d y)$ can be computed by polar coordinate: From

$$
\begin{aligned}
x & =h \cos \theta, \quad y=h \sin \theta, \\
d x & =-h \sin \theta d \theta, \\
d y & =h \cos \theta d \theta,
\end{aligned}
$$

we see

$$
\frac{x d y-y d x}{x^{2}+y^{2}}=\frac{h^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}{h^{2}} d \theta=d \theta
$$

Hence

$$
\int_{C_{*}} \frac{x d y-y d x}{x^{2}+y^{2}}=2 \pi
$$

Vector Form using the Curl

Any vector field in \mathbb{R}^{2} can be treated as a vector field in \mathbb{R}^{3}. For example, the vector field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ on \mathbb{R}^{2} can be viewed as $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+0 \mathbf{k}$. Then we can define its curl and it can be shown that the curl is (compute!) $(\partial N / \partial x-\partial M / \partial y) \mathbf{k}$. Then we obtain

$$
(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k}=\left[\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}\right] \cdot \mathbf{k}=\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right)
$$

Hence by Green's theorem,
$\int_{\partial D} \mathbf{F} \cdot d \mathbf{x}=\int_{\partial D} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\iint_{D}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d x d y$
This is a vector form of Green's theorem.

Theorem 15.4.6. (Vector form of Green's theorem) Let $D \subset \mathbb{R}^{2}$ be region with ∂D. If $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ is a \mathcal{C}^{1}-vector field on D then

$$
\int_{\partial D} \mathbf{F} \cdot d \mathbf{x}=\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d x d y=\iint_{D}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d x d y
$$

15.5 (Parameterized) Surfaces and Surface area

Definition 15.5.1. A parameterized surface is a (one-to-one) function $\mathbf{r}: D \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

$$
\mathbf{r}(u, v)=(x(u, v), y(u, v), z(u, v))
$$

Normal Vectors, Tangent Planes, and Surface Area

First look at the case when the surface is the graph of $f: D \rightarrow \mathbb{R}$. Then we have

$$
\mathbf{r}(x, y)=(x, y, f(x, y))
$$

First fix $y=y_{0}$ and then $x=x_{0}$. The derivatives of \mathbf{r} in the direction of x-axis and y-axis at $\mathbf{r}\left(x_{0}, y_{0}\right)=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ are

$$
\mathbf{r}_{x}\left(x_{0}, y_{0}\right)=\mathbf{i}+f_{x}\left(x_{0}, y_{0}\right) \mathbf{k}, \quad \mathbf{r}_{y}\left(x_{0}, y_{0}\right)=\mathbf{j}+f_{y}\left(x_{0}, y_{0}\right) \mathbf{k}
$$

These are nothing but the tangent vectors to the curves $\mathbf{r}\left(x, y_{0}\right)$ and $\mathbf{r}\left(x_{0}, y\right)$, respectively. Hence the normal vector is given by the cross product

$$
\begin{aligned}
\mathbf{r}_{x}\left(x_{0}, y_{0}\right) \times \mathbf{r}_{y}\left(x_{0}, y_{0}\right) & =\left(\mathbf{i}+f_{x}\left(x_{0}, y_{0}\right) \mathbf{k}\right) \times\left(\mathbf{j}+f_{y}\left(x_{0}, y_{0}\right) \mathbf{k}\right) \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & f_{x}\left(x_{0}, y_{0}\right) \\
0 & 1 & f_{y}\left(x_{0}, y_{0}\right)
\end{array}\right| \\
& =-f_{x}\left(x_{0}, y_{0}\right) \mathbf{i}-f_{y}\left(x_{0}, y_{0}\right) \mathbf{j}+\mathbf{k}
\end{aligned}
$$

In general, consider the surface parameterized by

$$
\mathbf{r}(x(u, v), y(u, v))=(x(u, v), y(u, v), z(u, v))
$$

Then we see two tangent vectors are

$$
\begin{aligned}
& \mathbf{r}_{u}=\frac{\partial \mathbf{r}}{\partial u}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\left.\frac{\partial z}{\partial u} \mathbf{k}\right|_{\left(u_{0}, v_{0}\right)} \\
& \mathbf{r}_{v}=\frac{\partial \mathbf{r}}{\partial v}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\left.\frac{\partial z}{\partial v} \mathbf{k}\right|_{\left(u_{0}, v_{0}\right)}
\end{aligned}
$$

These are obtained by considering the cross sections with the planes $v=v_{0}$ and $u=u_{0}$, respectively. If the normal vector

$$
\mathbf{N}=\mathbf{r}_{u} \times \mathbf{r}_{v}=\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}
$$

is nonzero, then we say the surface is smooth.

Definition 15.5.2. When \mathbf{N} is a normal vector to a surface \mathbf{r}, the tangent plane at $\mathbf{r}\left(u_{0}, v_{0}\right)=\left(x_{0}, y_{0}, z_{0}\right)$ is defined by

$$
\mathbf{N} \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

Example 15.5.3. Consider the surface given by

$$
x=u \cos v, \quad y=u \sin v, \quad z=u^{2}+v^{2} .
$$

Find the tangent plane at $\mathbf{r}(1,0)$.

ellipsoid: $(a \sin \phi \cos \theta, b \sin \phi \sin \theta, c \cos \phi)$

Figure 15.6: Coord. curves, Tangent vectors and normal vectors to a surface
sol. Since $\mathbf{r}(u, v)=\left(u \cos v, u \sin v, u^{2}+v^{2}\right)$ we have

$$
\mathbf{r}_{v}=(\cos v, \sin v, 2 u), \quad \mathbf{r}_{v}=(-u \sin v, u \cos v, 2 v) .
$$

Hence we see $\mathbf{r}_{u} \times \mathbf{r}_{v}=\left(-2 u^{2} \cos v+2 v \sin v,-2 u^{2} \sin v-2 v \cos v, u\right)$. Since $\mathbf{r}(1,0)=(1,0,1)$ and $\mathbf{N}=\mathbf{r}_{u} \times \mathbf{r}_{v}(1,0)=(-2,0,1)$, we see the tangent plane is given as

$$
-2(x-1)+0(y-0)+1(z-1)=0
$$

Area of Parameterized Surface

Recall 2-D case: When $\mathbf{r}: D \rightarrow R$ is a transformation in \mathbb{R}^{2}. Consider the small rectangle $A=[u, u+\Delta u] \times[v+\Delta v]$. The two tangent vectors $(\Delta u, 0)$ and $(0, \Delta v)$ are mapped to the boundary of image $\mathbf{r}(A)$ at $\mathbf{r}(u, v)$ as

$$
\mathbf{r}_{u} \Delta u, \quad \mathbf{r}_{v} \Delta v
$$

These vectors form a parallelogram approximating the region $\mathbf{r}(A)$ (figure ??). The area of the parallelogram is

$$
\begin{aligned}
&\left|\begin{array}{ll}
\frac{\partial x}{\partial u} \Delta u & \frac{\partial x}{\partial v} \Delta v \\
\frac{\partial y}{\partial u} \Delta u & \frac{\partial y}{\partial v} \Delta v
\end{array}\right|=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \Delta u \Delta v=\frac{\partial(x, y)}{\partial(u, v)} \Delta u \Delta v . \\
&\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| \Delta u \Delta v=|J| \Delta u \Delta v
\end{aligned}
$$

Hence we have

$$
\iint_{R} d x d y=\iint_{D}|J| d u d v
$$

Figure 15.7: approximate $\mathbf{r}(A)$

Now we consider a surface lying in space: $\mathbf{r}: D \rightarrow \mathbb{R}^{3}$. Divide the domain D into small rectangles of the form $A=[u, u+\Delta u] \times[v, v+\Delta v]$. The image of A under \mathbf{r} is a portion of the surface having four corners at

$$
\mathbf{r}(u, v), \quad \mathbf{r}(u+\Delta u, v), \quad \mathbf{r}(u, v+\Delta v), \mathbf{r}(u+\Delta u, v+\Delta v)
$$

This surface can be approximated by a parallelogram whose sides are given $\operatorname{by}\left(\right.$ fig ??) $\mathbf{r}_{u}(u, v) \Delta u$ and $\mathbf{r}_{v}(u, v) \Delta v$, where

$$
\begin{align*}
\mathbf{r}_{u} & =\frac{\partial \mathbf{r}}{\partial u}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\frac{\partial z}{\partial u} \mathbf{k} \tag{15.8}\\
\mathbf{r}_{v} & =\frac{\partial \mathbf{r}}{\partial v}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\frac{\partial z}{\partial v} \mathbf{k}
\end{align*}
$$

Hence the area of $\mathbf{r}(A)$ is (again like 2D) approximated by

$$
\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| \Delta u \Delta v
$$

Hence the area of the surface is the limit of sum of these.

Definition 15.5.4. We define the surface area $A(S)$ of a parameterized surface S by

$$
A(S)=\iint_{S} d S=\iint_{D}\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v
$$

We call $d \sigma=d S:=\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v$ the surface area differential. Then

Figure 15.8: Approx. area of surface by a tangent plane
we see that ${ }^{1}$

$$
\iint_{\mathbf{r}(D)} d S=\iint_{D}\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v
$$

Example 15.5.5 (Cone). Let D be the surface of a cone given by

$$
x=r \cos \theta, \quad y=r \sin \theta, \quad z=r, \quad 0 \leq r \leq 1
$$

sol. Compute directly using $\left\|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right\| d r d \theta$. We see that $\left\|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right\|=r \sqrt{2}$.
Hence the area is

$$
\begin{aligned}
\iint_{\mathbf{r}(D)} d S & =\iint_{D}\left\|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right\| d r d \theta \\
& =\iint_{D} r \sqrt{2} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r \sqrt{2} d r d \theta=\pi \sqrt{2}
\end{aligned}
$$

Example 15.5.6 (Football like surface). Find the area of the surface of revolution of the curve $x=\cos z, y=0,|z| \leq \pi / 2$ around z-axis.

[^0]sol. The surface of revolution is parameterized by
$\mathbf{r}(u, v)=(x, y, z), x=\cos u \cos v, y=\cos u \sin v, z=u,-\frac{\pi}{2} \leq u \leq \frac{\pi}{2}, 0 \leq v \leq 2 \pi$.
We see
\[

$$
\begin{aligned}
\mathbf{r}_{u} & =-\sin u \cos v \mathbf{i}-\sin u \sin v \mathbf{j}+\mathbf{k} \\
\mathbf{r}_{v} & =-\cos u \sin v \mathbf{i}+\cos u \cos v \mathbf{j}
\end{aligned}
$$
\]

Compute $\left\|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right\|$.

$$
\begin{aligned}
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sin u \cos v & -\sin u \sin v & 1 \\
-\cos u \sin v & \cos u \cos v & 0
\end{array}\right| \\
& =-\cos u \cos v \mathbf{i}-\cos u \sin v \mathbf{j}-(\sin u \cos u) \mathbf{k} \\
\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| & =\cos u \sqrt{1+\sin ^{2} u}
\end{aligned}
$$

Hence the area is

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} \int_{-\pi / 2}^{\pi / 2} \cos u \sqrt{1+\sin ^{2} u} d u d v \\
& =2 \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \sqrt{1+t^{2}} d t d v(\text { need table }) \\
& =\int_{0}^{2 \pi}\left[t \sqrt{1+t^{2}}+\ln \left(t+\sqrt{1+t^{2}}\right)\right]_{0}^{1} d v \\
& =2 \pi[\sqrt{2}+\ln (1+\sqrt{2})] .
\end{aligned}
$$

Implicit Surfaces

Assume a surface is defined implicitly by

$$
F(x, y, z)=c .
$$

In this case, it is not easy to find the explicit form of parametrization. However, we can still compute

$$
\begin{equation*}
d S=\left\|\left(\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\frac{\partial z}{\partial u} \mathbf{k}\right) \times\left(\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\frac{\partial z}{\partial v} \mathbf{k}\right)\right\| d u d v \tag{15.9}
\end{equation*}
$$

from the implicit expression. Assume the surface is defined over a region R having \mathbf{k} as the unit normal vector. Define the parameters $x=u, y=v$ then $z(x, y)=z(u, v)$.

Figure 15.9: Implicit surface $F(x, y, z)=c$ with normal vector \mathbf{k} on R

Assume the surface has the following parametrization

$$
\begin{equation*}
\mathbf{r}(u, v)=u \mathbf{i}+v \mathbf{j}+h(u, v) \mathbf{k} . \tag{15.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathbf{r}_{u}=\mathbf{i}+\frac{\partial h}{\partial u} \mathbf{k} \text { and } \mathbf{r}_{v}=\mathbf{j}+\frac{\partial h}{\partial v} \mathbf{k} . \tag{15.11}
\end{equation*}
$$

Taking derivative w.r.t x (and y resp.) using implicit differentiation, we get

$$
F_{x}+\frac{\partial z}{\partial x}=0 \text { and } F_{y}+\frac{\partial z}{\partial y}=0 .
$$

From this we get

$$
\frac{\partial h}{\partial u}=-\frac{F_{x}}{F_{z}} \text { and } \frac{\partial h}{\partial v}=-\frac{F_{y}}{F_{z}} .
$$

Hence

$$
\begin{equation*}
\mathbf{r}_{u}=\mathbf{i}-\frac{F_{x}}{F_{z}} \mathbf{k} \text { and } \mathbf{r}_{v}=-\frac{F_{y}}{F_{z}} \mathbf{k} \tag{15.12}
\end{equation*}
$$

and

$$
\begin{aligned}
\mathbf{r}_{u} \times \mathbf{r}_{v} & =\frac{F_{x}}{F_{z}} \mathbf{i}+\frac{F_{y}}{F_{z}} \mathbf{j}+\mathbf{k} \\
& =\frac{1}{F_{z}}\left(F_{x} \mathbf{i}+F_{y} \mathbf{j}+F_{z} \mathbf{k}\right) \\
& =\frac{\nabla F}{F_{z}}=\frac{\nabla F}{\nabla F \cdot \mathbf{k}} .
\end{aligned}
$$

The area of implicit surface $F(x, y, z)=c$ defined over R is

$$
\iint_{R} \frac{|\nabla F|}{|\nabla F \cdot \mathbf{p}|} d A
$$

where $\mathbf{p}=\mathbf{i}, \mathbf{j}$ or \mathbf{k} is the normal to R and $\nabla F \cdot \mathbf{p} \neq 0$.
Example 15.5.7. Find the area of surface of paraboloid $x^{2}+y^{2}-z=0$ between $0 \leq z \leq 4$.
sol. Let $F(x, y, z)=x^{2}+y^{2}-z$ so that $\nabla F=2 x \mathbf{i}+2 y \mathbf{j}-\mathbf{k} . \nabla F \cdot \mathbf{k}=-1$.
With $D=\left\{x^{2}+y^{2} \leq 4\right\}$, the area is

$$
\begin{aligned}
A & =\iint_{D} \sqrt{4 x^{2}+4 y^{2}+1} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{2} \sqrt{4 r^{2}+1} r d r d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{12}\left[\left(4 r^{2}+1\right)^{3 / 2}\right]_{0}^{2} d \theta \\
& =\frac{\pi}{6}(17 \sqrt{17}-1) .
\end{aligned}
$$

Surface Area of a Graph

When a surface S is given by the graph of function $z=f(x, y)$ on D, we see U is parameterized by $\mathbf{r}(x, y)=(x, y, f(x, y))$. Find $\mathbf{r}_{x}, \mathbf{r}_{y}$ by

$$
\mathbf{r}_{x}=\mathbf{i}+f_{x} \mathbf{k}, \quad \mathbf{r}_{y}=\mathbf{j}+f_{y} \mathbf{k}
$$

This corresponds to above case with $F(x, y, z)=z-f(x, y)$.
Since

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=\left(\mathbf{i}+f_{x} \mathbf{k}\right) \times\left(\mathbf{j}+f_{y} \mathbf{k}\right)=-f_{x} \mathbf{i}-f_{y} \mathbf{j}+\mathbf{k},
$$

the area is

$$
\iint_{\mathbf{r}(D)} d S=\iint_{D} \sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1} d x d y
$$

Geometric interpretation

We refer to figure ??. The unit normal vector $\mathbf{N}(x, y, z)$ on S is

$$
\mathbf{N}(x, y, z)=-f_{x} \mathbf{i}-f_{y} \mathbf{j}+\mathbf{k}
$$

We can find the formula using the angle between \mathbf{N} and \mathbf{k}. Let φ be the angle between \mathbf{N} and \mathbf{k}. Then $\cos \varphi$ satisfies

$$
\cos \varphi=\frac{\mathbf{N} \cdot \mathbf{k}}{\|\mathbf{N}\|}=\frac{1}{\sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1}}
$$

Hence

$$
d S=\sqrt{\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}+1} d x d y=\frac{d x d y}{\cos \varphi}
$$

and we get

$$
\iint_{\mathbf{r}} d S=\iint_{D} \frac{d x d y}{\cos \varphi} .
$$

Figure 15.10: Ratio between two surface area is the cosine of angle

Example 15.5.8. Find the surface area of a unit ball.
sol. From $x^{2}+y^{2}+z^{2}=1$, we let $z=f(x, y)=\sqrt{1-x^{2}-y^{2}}$.

$$
\frac{\partial f}{\partial x}=\frac{-x}{\sqrt{1-x^{2}-y^{2}}}, \quad \frac{\partial f}{\partial y}=\frac{-y}{\sqrt{1-x^{2}-y^{2}}} .
$$

Area of the half sphere is

$$
\begin{aligned}
\iint_{S} d S & =\iint_{D} \frac{1}{\sqrt{1-x^{2}-y^{2}}} d x d y \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \frac{r}{\sqrt{1-r^{2}}} d r d \theta \\
& =2 \pi
\end{aligned}
$$

Example 15.5.9. Let $\mathbf{r}=(r \cos \theta, r \sin \theta, \theta)$ be the parametrization of a helicoid-like surface S, where $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$. Suppose S is covered with a metal of density m which equal to twice the distance to the central axis, i.e, $m=2 \sqrt{x^{2}+y^{2}}=2 r$. Find the total mass of metal covering the surface.
sol. First we can show $\left\|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right\|=\sqrt{1+r^{2}}$. Hence we have

$$
\begin{aligned}
M & =\iint_{S} 2 r d S=2 \iint_{D} r\left\|\mathbf{r}_{r} \times \mathbf{r}_{\theta}\right\| d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} 2 r \sqrt{1+r^{2}} d r d \theta=\frac{4}{3} \pi\left(2^{3 / 2}-1\right) .
\end{aligned}
$$

15.6 Surface Integrals

Integrals of Scalar functions over Surface

Definition 15.6.1. Let S be a surface parameterized by $\mathbf{r}(u, v)=(x(u, v), y(u, v), z(u, v))$, where $(u, v) \in D$. Then the surface integral of a scalar function $f(x, y, z)$ defined on S is

$$
\iint_{S} f d S=\iint_{D} f(x(u, v), y(u, v), z(u, v))\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v
$$

Surface integrals over graphs

Suppose S is the graph of a C^{1} function $z=g(x, y)$. Then we parameterize it by

$$
x=u, \quad y=v, \quad z=g(u, v)
$$

and

$$
\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|=\sqrt{1+\left(g_{u}\right)^{2}+\left(g_{v}\right)^{2}}
$$

So the integral of f on S becomes

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, g(x, y)) \sqrt{1+\left(g_{x}\right)^{2}+\left(g_{y}\right)^{2}} d x d y
$$

Example 15.6.2. Evaluate $\iint_{S} z^{2} d S$ when S is the unit sphere.
sol. The unit sphere is described by

$$
\mathbf{r}(\phi, \theta)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi),(0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi)
$$

Since

$$
\left\|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right\|=\sin \phi
$$

and $z^{2}=\cos ^{2} \phi$, we have

$$
\begin{aligned}
\iint_{S} z^{2} d S & =\iint_{D} \cos ^{2} \phi\left\|\mathbf{r}_{\theta} \times \mathbf{r}_{\phi}\right\| d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \cos ^{2} \phi \sin \phi d \phi d \theta \\
& =\frac{4 \pi}{3}
\end{aligned}
$$

Example 15.6.3. Evaluate $\iint_{S} G(x, y, z) d S$ over a football like surface S

$$
x=\cos u \cos v, y=\cos u \sin v, z=u,-\frac{\pi}{2} \leq u \leq \frac{\pi}{2}, 0 \leq v \leq 2 \pi
$$

when $G(x, y, z)=\sqrt{1-x^{2}-y^{2}}$.
sol. Over the football surface the function G is given by

$$
\sqrt{1-x^{2}-y^{2}}=\sqrt{1-\cos ^{2} u}=|\sin u|
$$

The surface differential is (Ref. Example ??)

$$
d S=\cos u \sqrt{1+\sin ^{2} u} d u d v
$$

Hence

$$
\begin{aligned}
\iint_{S} \sqrt{1-x^{2}-y^{2}} d S & =\int_{0}^{2 \pi} \int_{-\pi / 2}^{\pi / 2}|\sin u| \cos u \sqrt{1+\sin ^{2} u} d u d v \\
& =2 \int_{0}^{2 \pi} \int_{-\pi / 2}^{\pi / 2}|\sin u| \cos u \sqrt{1+\sin ^{2} u} d u d v \\
& =\int_{0}^{2 \pi} \int_{1}^{2} \sqrt{w} d w d v \\
& =\left.2 \pi \cdot \frac{2}{3} w^{3 / 2}\right|_{1} ^{2}=\frac{4 \pi}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

Example 15.6.4. Evaluate $\iint_{S} \sqrt{x(1+2 z)} d S$ where $S=\left\{z=y^{2} / 2, x, y \geq\right.$ $0, x+y \leq 1\}$.
sol. This is an integral over a graph of a function. Let $z=g(x, y)=y^{2} / 2$ so that the surface differential is

$$
d S=\sqrt{g_{x}^{2}+g_{y}^{2}+1} d x d y=\sqrt{y^{2}+1} d x d y
$$

The surface area is

$$
\begin{aligned}
\iint_{S} \sqrt{x(1+2 z)} \sqrt{y^{2}+1} d x d y & =\int_{0}^{1} \int_{0}^{1-x} \sqrt{x}\left(y^{2}+1\right) d y d x \\
& =\int_{0}^{1} \sqrt{x}\left((1-x)+\frac{1}{3}(1-x)^{3}\right) d x
\end{aligned}
$$

Orientation

Let $\mathbf{r}: D \rightarrow \mathbb{R}^{3}$ represent an oriented surface. If $\mathbf{n}(\mathbf{r})$ is the unit normal to S, then

$$
\mathbf{n}(\mathbf{r})= \pm \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|}
$$

We choose a parametrization so that the sign is positive (orientation-preserving)

Surfaces Integrals of vector Fields

Definition 15.6.5. The surface integral of \mathbf{F} on a surface S is the surface integral of normal projection of \mathbf{F} to the surface S.

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

If \mathbf{F} represents the velocity of a fluid, then the surface integral is the amount of fluid that passes through the surface (per unit time).

Since $\mathbf{n}=\mathbf{r}_{u} \times \mathbf{r}_{v} /\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|$ is the unit normal vector to the surface,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\iint_{D} \mathbf{F} \cdot \mathbf{n}\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v \\
& =\iint_{D} \mathbf{F} \cdot \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\|}\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v \\
& :=\iint_{\mathbf{r}(D)} \mathbf{F} \cdot d \mathbf{S}
\end{aligned}
$$

Example 15.6.6. Find the flux of $\mathbf{F}=y z \mathbf{i}+x \mathbf{j}-z^{2} \mathbf{k}$ through the surface S given by

$$
y=x^{2}, 0 \leq x \leq 1,0 \leq z \leq 4
$$

sol. We can parameterize the surface using (x, z). $\mathbf{r}=x \mathbf{i}+x^{2} \mathbf{j}+z \mathbf{k}$. So

$$
\begin{aligned}
\mathbf{r}_{x} & =\mathbf{i}-2 x \mathbf{j}, \quad \mathbf{r}_{z}=\mathbf{k} \\
\mathbf{r}_{x} \times \mathbf{r}_{z} & =2 x \mathbf{i}-\mathbf{j} \\
\mathbf{n} & =\frac{2 x \mathbf{i}-\mathbf{j}}{\sqrt{4 x^{2}+1}}
\end{aligned}
$$

On the surface

$$
\mathbf{F}=y z \mathbf{i}+x \mathbf{j}-z^{2} \mathbf{k}=x^{2} z \mathbf{i}+x \mathbf{j}-z^{2} \mathbf{k}
$$

Hence

$$
\begin{aligned}
\mathbf{F} \cdot \mathbf{n} & =\frac{1}{\sqrt{4 x^{2}+1}}\left(x^{2} z \cdot 2 x-x\right) \\
& =\frac{2 x^{3} z-x}{\sqrt{4 x^{2}+1}} \\
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S & =\int_{0}^{4} \int_{0}^{1} \frac{2 x^{3} z-x}{\sqrt{4 x^{2}+1}}\left\|\mathbf{r}_{x} \times \mathbf{r}_{z}\right\| d x d z \\
& =\int_{0}^{4} \int_{0}^{1}\left(2 x^{3} z-x\right) x d z=2
\end{aligned}
$$

Example 15.6.7. Let S be the unit sphere parameterized by

$$
\mathbf{r}(\phi, \theta)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi),(0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi) .
$$

Compute $\iint_{S} \mathbf{r} \cdot d \mathbf{S}$, where $\mathbf{r}=x \mathbf{i}+y \mathbf{i}+z \mathbf{k}$ denotes the position vector.
sol. We see

$$
\begin{aligned}
\mathbf{r}_{\phi} & =\cos \phi \cos \theta \mathbf{i}+\cos \phi \sin \theta \mathbf{j}-\sin \phi \mathbf{k}, \\
\mathbf{r}_{\theta} & =-\sin \phi \sin \theta \mathbf{i}+\sin \phi \cos \theta \mathbf{j}, \\
\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} & =\sin \phi(\cos \theta \sin \phi \mathbf{i}+\sin \theta \sin \phi \mathbf{j}+\cos \phi \mathbf{k}) .
\end{aligned}
$$

Hence $\mathbf{r} \cdot d \mathbf{S}=\mathbf{r} \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right) d \phi d \theta=\sin \phi d \phi d \theta$ and

$$
\iint_{S} \mathbf{r} \cdot d \mathbf{S}=\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \phi d \phi d \theta=4 \pi .
$$

Surface Integral of vector fields over Graphs

Suppose S is the graph of $z=g(x, y)$. We parameterize the surface S by $\mathbf{r}(x, y)=(x, y, g(x, y))$ and compute

$$
\mathbf{r}_{x}=\mathbf{i}+g_{x} \mathbf{k}, \quad \mathbf{r}_{y}=\mathbf{j}+g_{y} \mathbf{k} .
$$

Hence

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=-\left(g_{x}\right) \mathbf{i}-\left(g_{y}\right) \mathbf{j}+\mathbf{k}
$$

and we see

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F} \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) d x d y=\iint_{D}\left[F_{1}\left(-g_{x}\right)+F_{1}\left(-g_{y}\right)+F_{3}\right] d x d y .
$$

Figure 15.11: Area of shadow region and flux across S

Example 15.6.8 (Gauss Law). The flux of an electric field \mathbf{E} over a closed surface S is the net charge Q contained in the surface. Namely,

$$
\iint_{S} \mathbf{E} \cdot d \mathbf{S}=Q
$$

Suppose $\mathbf{E}=E \mathbf{n}$ (constant multiple of the unit normal vector) then

$$
\iint_{S} \mathbf{E} \cdot d \mathbf{S}=\iint_{S} E d S=Q=E \cdot A(S) .
$$

So $E=\frac{Q}{A(S)}$ and if S is sphere of radius R then

$$
\begin{equation*}
E=\frac{Q}{4 \pi R^{2}} . \tag{15.13}
\end{equation*}
$$

Example 15.6.9. Given a disk lying on the plane $z=12$ described by

$$
z=12, \quad x^{2}+y^{2} \leq 25
$$

compute $\iint_{S} \mathbf{r} \cdot d \mathbf{S}$ where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
sol. We see

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=\mathbf{i} \times \mathbf{j}=\mathbf{k}
$$

So $\mathbf{r} \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right)=z$ and

$$
\iint_{S} \mathbf{r} \cdot d \mathbf{S}=\iint_{D} z d x d y=12 A(D)=300 \pi
$$

Summary

(1) Given a parameterized surface $\mathbf{r}(u, v)$
(a) Surface integral of a scalar function f :

$$
\iint_{\mathbf{r}(D)} f d S=\iint_{D} f(\mathbf{r}(u, v))\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v
$$

(b) Scalar surface element:

$$
d S=\left\|\mathbf{r}_{u} \times \mathbf{r}_{v}\right\| d u d v
$$

(c) Integral of a vector field:

$$
\iint_{\mathbf{r}(D)} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v=\iint_{S}(\mathbf{F} \cdot \mathbf{n}) d S
$$

(d) Vector surface element:

$$
d \mathbf{S}=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v=\mathbf{n} d S
$$

(2) When the surface is given by a graph $z=g(x, y)$
(a) Integral of a scalar f :

$$
\iint_{S} f d S=\iint_{D} f(x, y, g(x, y)) \sqrt{\left(g_{x}\right)^{2}+\left(g_{y}\right)^{2}+1} d x d y
$$

(b) Scalar surface element:

$$
d S=\frac{d x d y}{\cos \theta}=\sqrt{\left(g_{x}\right)^{2}+\left(g_{y}\right)^{2}+1} d x d y
$$

(c) Integral of a vector field:

$$
\iint_{\mathbf{S}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\left(-F_{1} g_{x}-F_{2} g_{y}+F_{3}\right) d x d y
$$

(d) Vector surface element:

$$
d \mathbf{S}=\mathbf{n} d S=\left(-g_{x} \mathbf{i}-g_{y} \mathbf{j}+\mathbf{k}\right) d x d y
$$

15.7 Stokes' Theorem

Figure 15.12: Orientation by right handed rule

Stokes' theorem is the generalization of Green's theorem to the surface lying in \mathbb{R}^{3} : Consider a simple closed curve lying in \mathbb{R}^{3} and a surface having the curve as boundary: Caution: there are many surfaces having the same curve as boundary. But as long as the vector fields are C^{1} in a large region containing the curve and the surface, any surface play the same role.

Recall : the curl of $\mathbf{F}: \mathbf{F}=F_{1} \mathbf{i}+F_{2} \mathbf{j}+F_{3} \mathbf{k}$, then

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\operatorname{curl} \mathbf{F}=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \mathbf{i}+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \mathbf{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathbf{k} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| .
\end{aligned}
$$

Theorem 15.7.1 (Stokes' theorem). Let S be a piecewise smooth oriented surface. Suppose the boundary ∂S consists of finitely many piecewise C^{1} curve with the same orientation with S. Let $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ be a C^{1}-vector field defined on S. Then

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\int_{\partial S} \mathbf{F} \cdot d \mathbf{r} .
$$

For a 2D surface this reduces to the Green's Theorem:

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{k} d A=\iint_{S}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r} .
$$

Corollary 15.7.2. If S_{1} and S_{2} are two surfaces having the same boundary, then

$$
\iint_{S_{1}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\iint_{S_{2}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S .
$$

Example 15.7.3. Let S be smooth surface having an oriented simple closed curve C as boundary and let $\mathbf{F}=y e^{z} \mathbf{i}+x e^{z} \mathbf{j}+x y e^{z} \mathbf{k}$. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

$$
\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y e^{z} & x e^{z} & x y e^{z}
\end{array}\right|=0 .
$$

By Stoke's theorem,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=0 .
$$

Example 15.7.4. Calculate the circulation of $\mathbf{F}=\left(x^{2}-y\right) \mathbf{i}+4 z \mathbf{j}+x^{2} \mathbf{k}$ around the circle C where the plane $z=2$ meets the cone $z=\sqrt{x^{2}+y^{2}}$, counterclockwise. (In two ways)
sol. One way is to directly compute the circulation (Easy, skip it). But

Surface $z=y^{2}-x^{2}, x^{2}+y^{2} \leq 1$ for Example ??
another way is to use Stokes' theorem on the given surface. This make things worse!!! (see book Example 4, p. 1019)

However, we can use a flat disc $z=2$ having the same curve C as the boundary. On that disc $\mathbf{n}=\mathbf{k}$ and $\nabla \times \mathbf{F}=-4 \mathbf{i}-2 x \mathbf{j}+\mathbf{k} . \nabla \times \mathbf{F} \cdot \mathbf{n}=1$. So by Stokes theorem,

$$
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S=\iint_{x^{2}+y^{2} \leq 4} 1 d A=4 \pi .
$$

Example 15.7.5. Consider a surface S formed by hyperbolic paraboloid $z=$ $y^{2}-x^{2}$ lying inside the cylinder of radius one around z axis and the boundary curve C. (Fig ??) Compute the circulation of $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+x^{2} \mathbf{k}$ around C.(assume normal vector has positive \mathbf{k} component on S)
sol. First we find the boundary curve C. Since it is intersection with cylinder $r=1$, we can use

$$
\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+\left(\sin ^{2} t-\cos ^{2} t\right) \mathbf{k}
$$

We calculate the circulation of $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+x^{2} \mathbf{k}$ around the boundary curve C.

$$
\frac{d \mathbf{r}}{d t}=-\sin t \mathbf{i}+\cos t \mathbf{j}+(4 \sin t \cos t) \mathbf{k}
$$

and on the curve \mathbf{r} the vector field is

$$
\mathbf{F}=\sin t \mathbf{i}-\cos t \mathbf{j}+\cos ^{2} t \mathbf{k}
$$

$$
\begin{aligned}
\int_{0}^{2 \pi} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t} d t & =\int_{0}^{2 \pi}\left(-\sin ^{2} t-\cos ^{2} t+4 \sin t \cos ^{3} t\right) d t \\
& =\int_{0}^{2 \pi}\left(4 \sin t \cos ^{3} t-1\right) d t=-2 \pi
\end{aligned}
$$

However, the use of Stokes' theorem for this problem make it worse, terrible!!!

Example 15.7.6. Verify Stokes' theorem when $\mathbf{F}=\left(x^{2}+y\right) \mathbf{i}+\left(x^{2}+2 y\right) \mathbf{j}+2 z^{3} \mathbf{k}$ and $C: x^{2}+y^{2}=4, z=2$.
sol. Show that $\int_{C} \mathbf{F} \cdot d \mathbf{s}=-4 \pi($ easy $)$. Let S be the disk $\left\{(x, y, z): x^{2}+y^{2}=\right.$ $4, z=2\}$. If \mathbf{n} is the unit normal to S, then $\mathbf{n}=\mathbf{k}$ and

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2}+y & x^{2}+2 y & 2 z^{3}
\end{array}\right| \\
& =(0-0) \mathbf{i}-(0-0) \mathbf{j}+(2 x-1) \mathbf{k}=(2 x-1) \mathbf{k}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{s} & =\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S \\
& =\iint_{S}(2 x-1) \mathbf{k} \cdot \mathbf{k} d S=\int_{-2}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}}(2 x-1) d x d y \\
& =-2 \int_{-2}^{2} \sqrt{4-y^{2}} d y=-4 \pi
\end{aligned}
$$

Example 15.7.7. Evaluate

$$
\int_{C}-y^{3} d x+x^{3} d y-z^{3} d z
$$

where C is the intersection of the cylinder $x^{2}+y^{2}=1$ and plane $x+y+z=1$.
sol. Let $\mathbf{F}=-y^{3} \mathbf{i}+x^{3} \mathbf{j}-z^{3} \mathbf{k}$. Then above integral is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$. If we consider any reasonable surface S having C as boundary, we can use Stokes'
theorem with $\operatorname{curl} \mathbf{F}=3\left(x^{2}+y^{2}\right) \mathbf{k}$. Let us assume S is the surface defined by $x+y+z=1, x^{2}+y^{2} \leq 1$. A parametrization of S is given by $\mathbf{r}=(u, v, 1-u-v)$. We need to compute

$$
d \mathbf{S}=\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v=((\mathbf{i}-\mathbf{k}) \times(\mathbf{j}-\mathbf{k})=\mathbf{i}+\mathbf{j}+\mathbf{k}) d u d v .
$$

Hence

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} 3\left(x^{2}+y^{2}\right) d x d y=\frac{3 \pi}{2} .
$$

Here the domain D is the set $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

Example 15.7.8. A surface S is defined by $z=e^{-\left(x^{2}+y^{2}\right)}$ for $z \geq 1 / e$. Let

$$
\mathbf{F}=\left(e^{y+z}-2 y\right) \mathbf{i}+\left(x e^{y+z}+y\right) \mathbf{j}+e^{x+y} \mathbf{k}
$$

Evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$.
sol. We see

$$
\nabla \times \mathbf{F}=\left(e^{x+y}-x e^{y+z}\right) \mathbf{i}+\left(e^{y+z}-e^{x+y}\right) \mathbf{j}+2 \mathbf{k}
$$

and

$$
\mathbf{N}=2 x e^{-\left(x^{2}+y^{2}\right)} \mathbf{i}+2 y e^{-\left(x^{2}+y^{2}\right)} \mathbf{j}+\mathbf{k}
$$

So direct computation of $\int_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}$ seems almost impossible. Now try to use Stoke's theorem. First parameterize the boundary by

$$
x=\cos t, y=\sin t, z=1 / e
$$

Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C}\left(e^{\sin t+1 / e}-2 \sin t, \cdots, e^{\cos t+\sin t}\right) \cdot(-\sin t, \cos t, 0) d t
$$

This again is very difficult! Now think of another way. Think of another surface S^{\prime} which has the same boundary as S., i.e, let S^{\prime} be the unit disk $x^{2}+y^{2} \leq 1, z=1 / e$. Then $\mathbf{n}=\mathbf{k}$ and hence

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\iint_{S^{\prime}} \nabla \times \mathbf{F} \cdot \mathbf{n} d S=\iint_{S^{\prime}} 2 d S=2 \pi
$$

Curl as Circulation - Paddle Wheel interpretation

By Stokes' theorem,

$$
\begin{equation*}
\int_{\partial S_{\rho}} \mathbf{F} \cdot d \mathbf{r}=\iint_{S_{\rho}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S \tag{15.14}
\end{equation*}
$$

Hence dividing equation (??) we see

$$
\begin{aligned}
\lim _{\rho \rightarrow 0} \frac{1}{\pi \rho^{2}} \int_{\partial S_{\rho}} \mathbf{F} \cdot d \mathbf{s} & =\lim _{\rho \rightarrow 0} \frac{1}{\pi \rho^{2}} \iint_{S_{\rho}}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S \\
& =\lim _{\rho \rightarrow 0}(\nabla \times \mathbf{F}(Q)) \cdot \mathbf{n}(Q) \\
& =\left.(\nabla \times \mathbf{F}) \cdot \mathbf{n}\right|_{P}
\end{aligned}
$$

Thus curl of a vector field measures the circulation.

15.8 Divergence Theorem

We define the divergence of a vector field \mathbf{F} as

$$
\operatorname{div} \mathbf{F}=\nabla \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

Physical meaning of divergence: Expansion or compression of a material.
Theorem 15.8.1. [Gauss'Divergence Theorem] Let Ω be an elementary region in \mathbb{R}^{3} and $\partial \Omega$ consists of finitely many oriented piecewise smooth closed surfaces. Let \mathbf{F} be a \mathcal{C}^{1} vector field on a region containing Ω. Then

$$
\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{\Omega} \operatorname{div} \mathbf{F} d V
$$

The flux of a vector field \mathbf{F} across Ω is equal to the integral of $\operatorname{div} \mathbf{F}$ in Ω.
Example 15.8.2. S is the unit sphere $x^{2}+y^{2}+z^{2}=1$ and $\mathbf{F}=2 x \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$.
Find $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$.
sol. Let Ω be the region inside S. By Gauss theorem, it holds that

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{\Omega} \operatorname{div} \mathbf{F} d V
$$

Since $\operatorname{div} \mathbf{F}=\nabla \cdot\left(2 x \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}\right)=2(1+y+z)$, the rhs is

$$
2 \iiint_{\Omega}(1+y+z) d V=2 \iiint_{\Omega} 1 d V+2 \iiint_{\Omega} y d V+2 \iiint_{\Omega} z d V
$$

By symmetry, we have

$$
\iiint_{\Omega} y d V=\iiint_{\Omega} z d V=0
$$

Hence

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=2 \iiint_{\Omega}(1+y+z) d V=2 \iiint_{\Omega} 1 d V=\frac{8}{3} \pi
$$

Example 15.8.3. Find the flux of $\mathbf{F}=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k}$ through the box cut from the first octant by the planes $x=1, y=1, z=1$.
sol. Let Ω be the region inside S. By Gauss theorem, it holds that

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{\Omega} \operatorname{div} \mathbf{F} d V
$$

Since $\operatorname{div} \mathbf{F}=\nabla \cdot(x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k})=x+y+z$, the rhs is

$$
\iiint_{\Omega}(x+y+z) d V=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(x+y+z) d x d y d z=\frac{3}{2}
$$

Theorem 15.8.4. [Divergence of curl] Let \mathbf{F} be a \mathcal{C}^{2} vector field defined on a region containing Ω. Then

$$
\operatorname{div}(\operatorname{curl} \mathbf{F})=\nabla \cdot(\nabla \times \mathbf{F})=0
$$

Example 15.8.5. Show Gauss' theorem holds for $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ in Ω : $x^{2}+y^{2}+z^{2} \leq a^{2}$.
sol. First compute $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}$,

$$
\operatorname{div} \mathbf{F}=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3
$$

So

$$
\iiint_{\Omega}(\operatorname{div} \mathbf{F}) d V=\iiint_{\Omega} 3 d V=3\left(\frac{4}{3} \pi a^{3}\right)=4 \pi a^{3} .
$$

To compute the surface integral, we need to find the unit normal \mathbf{n} on $\partial \Omega$. Since $\partial \Omega$ is the level set of $f(x, y, z)=x^{2}+y^{2}+z^{2}-a^{2}$, we see the unit normal vector to $\partial \Omega$ is

$$
\mathbf{n}=\frac{\nabla f}{\|\nabla f\|}=\frac{2(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})}{\sqrt{4\left(x^{2}+y^{2}+z^{2}\right)}}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{a}
$$

So when $(x, y, z) \in \partial \Omega$,

$$
\mathbf{F} \cdot \mathbf{n}=\frac{x^{2}+y^{2}+z^{2}}{a}=\frac{a^{2}}{a}=a
$$

and

$$
\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S=\iint_{\partial \Omega} a d S=a\left(4 \pi a^{2}\right)=4 \pi a^{3} .
$$

Hence

$$
\iiint_{\Omega}(\operatorname{div} \mathbf{F}) d V=4 \pi a^{3}=\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S
$$

and Gauss' theorem holds.

Example 15.8.6. Let Ω be the region given by $x^{2}+y^{2}+z^{2} \leq 1$. Find $\iint_{\partial \Omega}\left(x^{2}+4 y-5 z\right) d S$ by Gauss' theorem.
sol. To use Gauss' theorem, we need a vector field $\mathbf{F}=F_{1} \mathbf{i}+F_{2} \mathbf{j}+F_{3} \mathbf{k}$ such that $\mathbf{F} \cdot \mathbf{n}=x^{2}+4 y-5 z$. Since the unit normal vector is $\mathbf{n}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, one such obvious choice is $\mathbf{F}=x \mathbf{i}+4 \mathbf{j}-5 \mathbf{k}$. Hence we have $\operatorname{div} \mathbf{F}=1+0+(-0)=1$. Now by Gauss theorem

$$
\begin{aligned}
\iint_{\partial \Omega}\left(x^{2}+4 y-5 z\right) d S & =\iint_{\partial \Omega}(x \mathbf{i}+4 \mathbf{j}-5 \mathbf{k}) \cdot \mathbf{n} d S \\
& =\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{\Omega} \operatorname{div} \mathbf{F} d V \\
& =\iiint_{\Omega} 1 d V=\frac{4}{3} \pi
\end{aligned}
$$

Example 15.8.7. Let Ω be the region satisfying $0<b^{2} \leq x^{2}+y^{2}+z^{2} \leq a^{2}$. Find the flux of the vector field $\mathbf{F}=(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) / \rho^{3}, \rho=\sqrt{x^{2}+y^{2}+z^{2}}$
across the boundary of Ω.
sol. On the boundary of $\Omega, \mathbf{n}= \pm(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) / \rho$. Hence $\mathbf{F} \cdot \mathbf{n}= \pm(x \mathbf{i}+$ $y \mathbf{j}+z \mathbf{k})$,

$$
\begin{gathered}
\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S_{a}} \mathbf{F} \cdot \mathbf{n} d S-\iint_{S_{a}} \mathbf{F} \cdot \mathbf{n} d S \\
\iint_{S_{a}} \mathbf{F} \cdot \mathbf{n} d S=\iint_{\rho=a} \frac{1}{\rho^{2}} d S=4 \pi
\end{gathered}
$$

Thus

$$
\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S=4 \pi-4 \pi=0 .
$$

To use Gauss' theorem, we compute that $\nabla \cdot \mathbf{F}=0$. Hence Now by Gauss theorem

$$
\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{\Omega} \operatorname{div} \mathbf{F} d V=0
$$

Divergence as flux per unit Volume

As we have seen before that $\operatorname{div} \mathbf{F}(P)$ is the rate of change of total flux at P per unite volume. Let Ω_{ρ} be a ball of radius ρ center at P. Then for some Q in Ω_{ρ},

$$
\iint_{\partial \Omega_{\rho}} \mathbf{F} \cdot \mathbf{n} d S=\iiint_{\Omega_{\rho}} \operatorname{div} \mathbf{F} d V=\operatorname{div} \mathbf{F}(Q) \cdot \operatorname{Vol}\left(\Omega_{\rho}\right) .
$$

Dividing by the volume we get

$$
\begin{equation*}
\operatorname{div} \mathbf{F}(Q)=\frac{1}{\operatorname{Vol}\left(\Omega_{\rho}\right)} \iint_{\partial \Omega_{\rho}} \mathbf{F} \cdot \mathbf{n} d S . \tag{15.15}
\end{equation*}
$$

Taking the limit, we see

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \frac{1}{\operatorname{Vol}\left(\Omega_{\rho}\right)} \iint_{\partial \Omega_{\rho}} \mathbf{F} \cdot \mathbf{n} d S=\operatorname{div} \mathbf{F}(P) . \tag{15.16}
\end{equation*}
$$

Now we can give a physical interpretation: If \mathbf{F} is the velocity of a fluid, then

Example 15.8.8. Find $\iint_{S} \mathbf{f} \cdot d \mathbf{S}$, where $\mathbf{F}=x y^{2} \mathbf{i}+x^{2} y \mathbf{j}+y \mathbf{k}$ and S is the surface of the the cylindrical region $x^{2}+y^{2}=1$ bounded by the planes $z=1$ and $z=-1$.
sol. Let W denote the solid region given above. By divergence theorem,

$$
\begin{aligned}
\iiint_{W} \operatorname{div} \mathbf{F} d V & =\iiint_{W}\left(x^{2}+y^{2}\right) d x d y d z \\
& =\int_{-1}^{1}\left(\iint_{x^{2}+y^{2} \leq 1}\left(x^{2}+y^{2}\right) d x d y\right) d z \\
& =2 \iint_{x^{2}+y^{2} \leq 1}\left(x^{2}+y^{2}\right) d x d y
\end{aligned}
$$

Now by polar coordinate,

$$
2 \iint_{x^{2}+y^{2} \leq 1}\left(x^{2}+y^{2}\right) d x d y=2 \int_{0}^{2 \pi} \int_{0}^{1} r^{3} d r d \theta=\pi
$$

Gauss' Law

Now apply Gauss' theorem to a region with a hole and get an important result in physics:

The electric field created by a point charge q at the origin is

$$
\mathbf{E}(x, y, z)=\frac{q}{4 \pi \epsilon_{0}} \frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{r^{3}}=\frac{q}{4 \pi \epsilon_{0}} \frac{\mathbf{r}}{r^{3}}, r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Theorem 15.8.9. (Gauss' Law) Let M be a region in \mathbb{R}^{3} and $O \notin \partial M$. Then

$$
\iint_{\partial M} \mathbf{E} \cdot \mathbf{n} d S=\frac{q}{4 \pi \epsilon_{0}} \iint_{\partial M} \frac{\mathbf{r} \cdot \mathbf{n}}{r^{3}} d S= \begin{cases}0 & \text { if } O \notin M \\ \frac{q}{\epsilon_{0}} & \text { if } O \in M\end{cases}
$$

Several versions of Green's theorem:

Tangential form $\oint_{C} \mathbf{F} \cdot \mathbf{T} d s$	$=\iint_{R} \nabla \times \mathbf{F} \cdot \mathbf{k} d A$
Stokes' theorem $\oint_{\partial S} \mathbf{F} \cdot \mathbf{T} d s$	$=\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S$
Normal form $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$	$=\iint_{R} \nabla \cdot \mathbf{F} d A$
Divergcenc theorem $\iint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d S$	$=\iiint_{\Omega} \nabla \cdot \mathbf{F} d V$

[^0]: ${ }^{1} \mathbf{r}$ is assumed to be $1-1$.

