
Chapter 14

Multiple integrals

14.4 Double integral in polar coordinate form

We are given a region D by

D = {(r, θ) | φ1(θ) ≤ r ≤ φ2(θ), α ≤ θ ≤ β}.

We divide D by the curves θ = constant and the lines ∆θ = (β − α)/l,

r0 = ∆r, r1 = 2∆r, . . . , rm+1 = m∆r,

and

θ0 = α, θ1 = α+∆θ, . . . , θl+1 = α+ l∆θ = β.

Choose any point (rk, θk) in ∆Ak and consider the Riemann sum

R(f, n) = Sn =
n
∑

k=1

f(rk, θk)∆Ak.

Let δ = maxi,j{∆ri,∆θj}. If the limit limn→∞R(f, n) exists (as δ approaches

0), then it is defined as the integral of f on D and we write

∫∫

D
f(r, θ) dA.

Assume the point (rk, θk) is at the center of ∆Ak(figure ??, left). The area

1
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(rk, θk)

rk∆θk

∆rk
b

b
(rk, θk)rk −∆r/2

rk +∆r/2

∆r

∆θ

Figure 14.1: Partition in polar coordinate

of ∆Ak is

1

2

(

rk +
∆r

2

)2

∆θ − 1

2

(

rk −
∆r

2

)2

∆θ = rk∆r∆θ.

Proposition 14.4.1. If D is given by D = {(r, θ) | φ1(θ) ≤ r ≤ φ2(θ), α ≤
θ ≤ β}, the integral of f can be evaluated as the iterated integral:

∫∫

D
f(r, θ) dA =

∫ β

α

∫ φ2(θ)

φ1(θ)
f(r, θ)r drdθ.

Example 14.4.2. Find the area of the region inside the cardioid r = 1−sin θ.

1

−1

−2

1−1

r = 1− sin θ

Figure 14.2: r = 1− sin θ

sol. cardioid. We see 0 ≤ r ≤ 1− sin θ

∫ 2π

0

∫ r=1−sin θ

r=0
r drdθ =

∫ 2π

0

[

r2

2

]r=1−sin θ

r=0

dθ

=

∫ 2π

0

(1− sin θ)2

2
dθ
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=
1

2

∫ 2π

0
(1− 2 sin θ + sin2 θ) dθ

=
1

2

∫ 2π

0
(1− 2 sin θ +

1− cos 2θ

2
) dθ

=
1

2

[

θ + 2cos θ +
θ

2
− sin 2θ

4

]2π

0

=
3

2
π.

Example 14.4.3. The area inside of the cardioid r = 1 + cos θ and outside

of the unit circle r = 1.

1

−1

1 2−1

r = 1 + cos θ

Figure 14.3: Find the limits of integral r = 1, r = 1 + cos θ

Example 14.4.4. Change the integral
∫∫

f(x, y) dxdy to polar coordinate.

sol. Since x = r cos θ, y = r sin θ, we can let T (r, θ) = (r cos θ, r sin θ).

Then Jacobian is

∣

∣

∣

∣

∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

∣

= r.

Hence
∫∫

f(x, y) dxdy =

∫∫

f(r cos θ, r sin θ) rdrdθ.
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r

θ

D∗

a b

θ1

θ2

y

x

D

θ2

a b

θ1

Example 14.4.5. D is between two concentric circles: x2+ y2 = 4, x2+ y2 =

1(x, y ≥ 0). Find the integral

∫∫

D

√

x2 + y2 + 1 dxdy.

Here D is the quoter of the annulus
√
1− x2 ≤ y ≤

√
4− x2.

sol. Use polar coordinate. We see the domain of integration in (r, θ) is

D∗ = {(r, θ)|1 ≤ r ≤ 2, 0 ≤ θ ≤ π/2}.

∫∫

D

√

x2 + y2 + 1 dxdy =

∫∫

D∗

√

r2 + 1r drdθ

=

∫ π/2

0

∫ 2

1

1

2

√

r2 + 1(2r)drdθ

=

∫ π/2

0

1

3
(r2 + 1)3/2|21dθ

=

∫ π/2

0

1

3
(53/2 − 23/2)dθ =

π

6
(53/2 − 23/2).

Example 14.4.6 (The Gaussian integral). Show that

∫ ∞

−∞
e−x2

dx =
√
π.
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To compute this, let us first observe

(
∫ ∞

−∞
e−x2

dx

)2

=

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2dy

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy

= lim
a→∞

∫∫

Da

e−(x2+y2)dxdy.

Thus it is necessary to compute

∫∫

Da

e−(x2+y2)dxdy.

By

∫∫

Da

e−(x2+y2)dxdy =

∫ 2π

0

∫ a

0
e−r2r drdθ =

∫ 2π

0

(

−1

2
e−r2

)∣

∣

∣

∣

a

0

= −1

2

∫ 2π

0
(e−a2 − 1)dθ = π(1− e−a2).

Let a→ ∞. Then we obtain the result.

14.5 Triple integrals in rectangular coordinates

x y

z

Figure 14.4: partition of box

Definition 14.5.1. Assume D = [a, b] × [c, d] × [p, q] be a box. Then we

subdivide intervals [a, b], [c, d] and [p, q] into n -intervals
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a = x0 < x1 < · · · < xn = b,

c = y0 < y1 < · · · < yn = d,

p = z0 < z1 < · · · < zn = q,

and call the resulting subboxes Djk = [xi−1, xi]× [yj−1, yj ]× [zk−1, zk] a par-

tition of D.

Definition 14.5.2. We let ∆Vijk = ∆xi∆yj∆zk (i, j, k = 1, . . . , n) Then the

Riemann sum becomes

R(f, n) = Sn =

n
∑

i,j,k=1

f(cijk)∆Vijk.

Here cijk is any point in the subbox Dijk.

Definition 14.5.3. If limn Sn = S exists independently of the choice of cijk,

then we say f is integrable in D and call S the triple integral and we write

∫∫∫

D
fdV,

∫∫∫

D
f(x, y, z)dV, or

∫∫∫

D
f(x, y, z)dxdydz.

Reduction to iterated integral

Theorem 14.5.4 (Fubini’s theorem). Suppose f is continuous on D = [a, b]×
[c, d] × [p, q]. The triple integral

∫∫∫

D f(x, y, z)dxdydz equals with any of the

following integrals.

∫ q

p

∫ d

c

∫ b

a
f(x, y, z) dxdydz,

∫ q

p

∫ b

a

∫ d

c
f(x, y, z) dydxdz, etc.

Elementary regions

Suppose R = {(x, y) | φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b} is an elementary

region in xy-plane and there are continuous functions γ1(x, y), γ2(x, y) such

that

D = {(x, y, z) | γ1(x, y) ≤ z ≤ γ2(x, y), (x, y) ∈ R}. (14.1)

Then D is called an elementary region of type 1.
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y =
φ
1 (x)

y =
φ
2 (x)

z =
γ1 (x, y)

z =
γ2 (x, y)

z

x
y

b

a

Figure 14.5: elementary region of type 1

Integrals over elementary regions

Then the integral on an elementary region D given above is computed by

∫∫∫

D
f dV =

∫∫

R

∫

f(x, y, z) dzdA

=

∫ b

a

∫ φ2(x)

φ1(x)

∫ γ2(x,y)

γ1(x,y)
f(x, y, z) dzdydx.

Example 14.5.5. Find the volume of radius 1.

z =
√

1− x2
− y2

z = −

√

1− x2
− y2

z

y

x

Figure 14.6: x2 + y2 + z2 = 1

sol. Unit ball is described by x2 + y2 + z2 ≤ 1. The volume is (Figure ??)

∫

D
1 dV, D = {(x, y, z) | x2 + y2 + z2 ≤ 1}.

Here we can take R = {(x, y) | x2 + y2 ≤ 1} and D = {−
√

1− x2 − y2 ≤ z ≤
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√

1− x2 − y2, (x, y) ∈ R}. Hence

∫∫

R

∫

dzdydx =

∫∫

R

∫ z=
√

1−x2−y2

z=−
√

1−x2−y2
1 dzdydx

= 2

∫

R

√

1− x2 − y2 dydx

= 2

∫ 1

−1

∫

√
1−x2

−
√
1−x2

√

1− x2 − y2 dydx.

This integral can be computed by letting
√
1− x2 = a

b

b

x
y

z

2

z = x2 + y2

Figure 14.7: z = x2 + y2, z = 2

Example 14.5.6. Let W be bounded by x = 0, y = 0, z = 2 and the surface

z = x2 + y2 where x ≥ 0, y ≥ 0. Find
∫∫∫

W x dxdydz.

sol. Method1. We describe the region by type 1.

0 ≤ x ≤
√
2, 0 ≤ y ≤

√

2− x2, x2 + y2 ≤ z ≤ 2.

∫∫∫

W
x dxdydz =

∫

√
2

0

[

∫

√
2−x2

0
(

∫ 2

x2+y2
x dz)dy

]

dx

=
8
√
2

15
.
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x
y

z

x2 + y2 = 1

x2 + z2 = 1

Figure 14.8: common region of two cylinders

Example 14.5.7 (Example 1 p.911). Find the volume of the regionD bounded

by z = x2 + 3y2 and z = 8− x2 − y2.

sol. We describe the region by type 1. First find the intersections of two

surfaces. Set x2 + 3y2 = 8 − x2 − y2 to get x2 + 2y2 = 4. The the domain is

the ellipse x2 + 2y2 = 4.

−2 ≤ x ≤ 2, −
√

(4− x2)/2 ≤ y ≤
√

(4− x2)/2, x2+3y2 ≤ z ≤ 8−x2−y2.

V (D) =

∫∫∫

D
dzdxdy =

∫ 2

−2

[

2

∫

√
(4−x2)/2

0
(8− 2x2 − 4y2)dy

]

dx

=

∫ 2

−2

[

2(8− 2x2)y − 4

3
y3
]

√
(4−x2)/2

0

dx

= 8π
√
2.

Example 14.5.8. Find the common region of two cylinders (Figure ??) x2+

y2 ≤ 1, x2 + z2 ≤ 1 (z ≥ 0).
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sol.

∫∫

x2+y2≤1

∫

√
1−x2

0
dzdxdy =

∫ 1

−1

∫

√
1−x2

−
√
1−x2

√

1− x2dydx

= 2

∫ 1

−1
(1− x2)dx

= 2

[

x− x3

3

]1

−1

= 4(1− 1

3
) =

8

3
.

14.6 Mass, Moments and Center of Mass

14.7 Triple integrals in Cylindrical and Spherical

Coordinate

Cylindrical coordinate system

Given a point P = (x, y, z), we can use polar coordinate for (x, y)-plane. Then

it holds that

Cylindrical to Cartesain











x = r cos θ,

y = r sin θ,

z = z.

We say (r, θ, z) is cylindrical coordinate of P .

Example 14.7.1. Identify the surface given by the equation z = 2r in cylin-

drical coordinate.

sol. Squaring, we have z2 = 4r2 = 4(x2 + y2). The section z = c is

c2 = 4(x2 + y2), while with x = 0 we have z = ±y. With y = 0 we have

z = ±x. Thus this is a cone.

Example 14.7.2. Change the equation x2 + y2 − z2 = 1 to cylindrical coor-

dinate.

sol. r2 − z2 = 1.
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r

z

x y

z

θ

(r, θ, z)

x

y

z

dθ

dr
rdθ

b
(r, θ)

dz

A sector of a cylinder

Figure 14.9: cylindrical coordinate

14.7.1 Integration in Cylindrical Coordinate

Let D be any region in R
3. We describe it using the coordinate

x = r cos θ, y = r sin θ, z = z.

We partition the region D into small cylindrical wedges (Fig ??); Small wedge

given by

[rk, rk +∆rk]× [θk, θk +∆θk]× [zk, zk +∆zk]

has volume ∆Vk = ∆Ak∆zk=̇rk∆rk∆θk∆zk. So the sum
∑

k f(xk, yk, zk)∆Vk

approaches

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

f(r cos θ, r sin θ, z)r dzdrdθ. (14.2)

Here D∗ is the region of described by the cylindrical coordinate (r, θ, z).

14.7.2 Integration in spherical coordinate system

We call (ρ, φ, θ) to be the spherical coordinate of P (x, y, z) if

(1) ρ is the distance from P to the origin

(2) φ is the angle that makes with positive z axis

(3) θ is the angle from cylindrical coordinate.
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ρ

φ

x

y

z

θ

P (ρ, φ, θ)
b

z

x y

ρ

∆θθ

ρ∆θ

ρ sinφ

φ
∆φ

ρ sinφ∆θ

ρ∆φ

Figure 14.10: Spherical coordinate

For the point P (x, y, z) we have

Spherical to Cartesian















x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ







ρ ≥ 0

0 ≤ θ < 2π

0 ≤ φ ≤ π







Example 14.7.3. Express the surface (1) xz = 1 and (2) x2 + y2 − z2 = 1 in

spherical coordinate.

sol. (1) Since xz = ρ2 sinφ cos θ cosφ = 1, we have the equation

ρ2 sin 2φ cosφ = 2.

(2) Since x2+y2−z2 = x2+y2+z2−2z2 = ρ2−2(ρ cos φ)2 = ρ2(1−2 cos2 φ),

the equation is ρ2(1− 2 cos2 φ) = 1.

Volumes in Spherical Coordinate-Geometric Derivation

Consider the small region bounded by the following conditions: (Fig.??)

ρ0 ≤ ρ ≤ ρ0 +∆ρ, φ0 ≤ φ ≤ φ0 +∆φ, θ0 ≤ θ ≤ θ0 +∆θ.
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The integral of f is defined as

∫∫∫

D
fdV =

∫ ∫ ∫

f(ρ, φ, θ)ρ2 sinφdρ dφ dθ. (14.3)

How to integrate in Spherical coordinates

Let D be the region determined by

D = {(ρ, φ, θ) : g1(φ, θ) ≤ ρ ≤ g2(φ, θ), h1 ≤ φ ≤ h2, α ≤ θ ≤ β} .

To evaluate
∫∫∫

D fdV =
∫ ∫ ∫

f(ρ, φ, θ)ρ2 sinφdρ dφ dθ we proceed as follows:

(1) Sketch the region D and project it onto xy plane.

(2) Find the ρ limit of the integration (g1(φ, θ) ≤ ρ ≤ g2(φ, θ))

(3) Find the φ limit of the integration (h1(θ) ≤ φ ≤ h2(θ))

(4) Find the θ limit of the integration

Example 14.7.4. Find the volume of the ”ice cream cone” D cut from the

solid ρ ≤ 1 by the cone φ = π/3.

sol.

x
y

z

ρ ≤ 1, φ ≤ π/3

V =

∫∫∫

D
ρ2 sinφdρ dφ dθ

=

∫ 2π

0

∫ π/3

0

∫ 1

0
ρ2 sinφdρ dφ dθ

=

∫ 2π

0

∫ π/3

0

[

ρ3

3

]1

0

sinφdφdθ

=

∫ 2π

0

∫ π/3

0

1

3
sinφdφdθ

=

∫ 2π

0

[

−1

3
cosφ

]π/3

0

dθ

= 2π

(

−1

6
+

1

3

)

=
π

3
.

Example 14.7.5. Compute

∫∫∫

W
exp(x2 + y2 + z2)3/2dV,
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where W is the unit ball.

sol. By spherical coordinate,

∫∫∫

W
exp(x2 + y2 + z2)3/2dV =

∫∫∫

W ∗

ρ2eρ
3
sinφdθ dφ dρ.

Changing it to an iterated integral, we have

∫ 1

0

∫ π

0

∫ 2π

0
ρ2eρ

3
sinφdθ dφ dρ

= 2π

∫ 1

0

∫ π

0
ρ2eρ

3
sinφdφdρ

= 4π

∫ 1

0
ρ2eρ

3
dρ =

4

3
π(e− 1).

14.8 Substitution-Change of variables

Let F (u, v) = f(x(u, v), y(u, v)) and recalling the definition of integral, we see

lim
n→∞

n
∑

i=1

f(xi, yi)∆Ai(x, y) = lim
n→∞

n
∑

i=1

F (ui, vi)∆Ai(u, v). (14.4)

One-to-one map and onto map

Example 14.8.1. Let D be the region in the first quadrant lying between

concentric circles r = a, r = b and θ1 ≤ θ ≤ θ2. (Fig. ??) Let

T (r, θ) = (r cos θ, r sin θ)

be the polar coordinate map. Find a region D∗ in (r, θ) coordinate plane such

that D = T (D∗).

sol. In D, we see

a ≤ r ≤ b, θ1 ≤ θ ≤ θ2.

Hence

D∗ = [a, b]× [θ1, θ2].
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y

x

D

θ2

a b

θ1

(r, θ) = T−1(x, y)

r

θ

D∗

a b

θ1

θ2

Figure 14.11: Inverse image of a polar rectangle

Coordinate transformations

Let D∗ be a region in R
2. Suppose T is C1-map D∗ → R

2. We denote the

image by D = T (D∗). (Fig ??)

T (D∗) = {(x, y) | (x, y) = T (u, v), (u, v) ∈ D∗}.

D∗

u

v

D

x

y

T

Figure 14.12: The transformation T maps D∗ to D

Jacobian Determinant-measures change of area

We first see how the area of a region changes under a linear map. Let D∗ =

[0, 1]× [0, 1], and construct a linear map T that maps D∗ onto a parallelogram

D. Consider the vector c1 := a2− a1, c2 := a4 − a1, and set (one may assume

a1 = 0)

T (u, v) = c1u+ c2v.
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u

v

1

1

D∗

a3

a4

a2

a1

D

x

y

T (u, v)

Figure 14.13: The image of a rectangle under a linear transform T

The two tangent vectors to D at the origin are

Tu = a2

Tv = a4.

The area of the parallelogram D is

Area(D) = ‖(a2 − a1)× (a4 − a1)‖ = |J |,

where

J =
∂(x, y)

∂(u, v)
:= det

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

= |DT |.

J is called the Jacobian of T .

Thus for the area change, we have

Theorem 14.8.2. Let A be a 2× 2 matrix with non zero determinant. Let T

be a linear transformation given by T (x) = Ax. Then T maps a parallelogram

D∗ onto the parallelogram D = T (D∗) and

Area of D = |detA| · (Area of D∗).

Example 14.8.3. Let T be ((x+y)/2, (x−y)/2) and letD be the square whose

vertices are (1, 0), (0, 1), (−1, 0), (0,−1). Find a D∗ such that D = T (D∗).

sol. Since T is linear T (x) = Ax where A is 2×2 matrix whose determinant

is nonzero. T−1 is also a linear transform. Hence by Theorem ??, D∗ must be

a parallelogram. To find D∗, it suffices to find the inverse image of vertices.

It turns out that

D∗ = [−1, 1] × [−1, 1].
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Now

A(D) = (
√
2)2 = 2, |detA| = 1

2
, A(D∗) = 4, .

Change of variable in the definite integrals

Let D = T (D∗), where

T (u, v) = (x(u, v), y(u, v)) for (u, v) ∈ D∗.

Then we have

∫∫

D
f(x, y) dxdy =

∫∫

D∗

f(T (u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dudv. (14.5)

Example 14.8.4. Evaluate

∫ 1

0

∫ 1−x

0

√
x+ y(y − 2x)2dydx.

sol. Let us use the substitution u = x+ y, v = y − 2x, so that

x =
u

3
− v

3
, y =

2u

3
+
v

3
. (14.6)

One can find the limits of integration and find J(u, v) = 1
3 . To find the limit

of integration, we see Figure ??. and Table ??.

Table 14.1: Limit of integration for Example ??
xy eq. for boundary uv eq. for boundary Simplified

x+ y = 1 u−v
3 + 2u+v

3 = 0 u = 1

x = 0 u
3 − v

3 = 0 v = u

y = 0 2u+v
3 = 0 v = −2u
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D∗

v = −2u

u = 1

v = u

u

v

D
x

y

Figure 14.14: Change of variables for Example ??

Hence we obtain

∫ 1

0

∫ 1−x

0

√
x+ y(y − 2x)2dydx =

∫ 1

0

∫ v=u

v=−2u

√
uv2|J(u, v)|dvdu

=
1

3

∫ 1

0

√
u

[

v3

3

]u

−2u

du

=
1

9

∫ 1

0

√
u(u3 + 8u3)du

=

∫ 1

0
u7/2du =

2

9
.

Example 14.8.5. Evaluate

∫ 2

1

∫ y

1/y

√

y

x
e
√
xydxdy.

sol. We use the substitution u =
√
xy, v =

√

y
x , so that

x =
u

v
, y = uv, u, v > 0. (14.7)

We see

J(u, v) =

∣

∣

∣

∣

∣

1
v − u

v2

v u

∣

∣

∣

∣

∣

=
2u

v
.
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1

2

1 2

v = 1

uv = 2

u = 1
u

v

1

2

1 2

y = 2

y = x

xy = 1

x

y

Figure 14.15: Change of variables for Example ??

Table 14.2: Limit of integration for Example ??
xy eq. for boundary uv eq. for boundary Simplified

y = x uv = u
v v = 1(u > 0)

xy = 1 u = 1 u = 1

y = 2 u =
√
2x, v =

√

2
x uv = 2

(Note that if we integrate w.r.t u first, we run into trouble!) Once we find

the limits of integration(need the region D and D∗) from Table ??, we obtain

∫∫

R

√

y

x
e
√
xydxdy =

∫∫

R
veu

2u

v
dudv

=

∫ 2

1

∫ 2/u

1
2ueudvdu

= 2

∫ 2

1
[vueu]

v=2/u
v=1 du

= 2

∫ 1

0
(2eu − ueu)du

= 2 [(2eu − ueu) + eu]u=2
u=1 = 2e(e − 2).
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Change of variable formula - general case

Let T be a differentiable mapping from a subset of R
2 to R

2. Let D∗ =

[u0, u0 +∆u]× [v0, v0 +∆v] and D be the image of D∗ under T . Consider

T (u, v) =

[

x

y

]

=

[

x(u0, v0) +
∂x
∂u(u0, v0)∆u+ ∂x

∂v (u0, v0)∆v + h.o.t

y(u0, v0) +
∂y
∂u(u0, v0)∆u+ ∂y

∂v (u0, v0)∆v + h.o.t

]

(14.8)

or in vector form, we have

T

[

u

v

]

= X = X0 +DT

[

∆u

∆v

]

+ h.o.t

and replace the map T by its linear part DT .

Geometric meaning of DT

Let

Tu := DT (u, v)

[

1

0

]

=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

][

1

0

]

=

[

∂x
∂u
∂y
∂u

]

and

Tv := DT (u, v)

[

0

1

]

=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

][

0

1

]

=

[

∂x
∂v
∂y
∂v

]

.

Now the two tangent vectors Tu∆u, Tv∆v form a parallelogram approx-

imating the region D(Figure ??). Hence the area of the parallelogram is

∣

∣

∣

∣

∣

∂x
∂u∆u

∂x
∂v∆v

∂y
∂u∆u

∂y
∂v∆v

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∆u∆v =
∂(x, y)

∂(u, v)
∆u∆v=̇J ·A(D∗).

‖Tu × Tv‖∆u∆v = |J |∆u∆v.

Summing over all subregions and taking the limit as ∆u,∆v → 0 we obtain

the formula.

Change of Variables in Triple Integrals

Definition 14.8.6. Let T : R3 → R
3 be given by

T (u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)).
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u
∆u

v

∆v

x

y

rv∆v

ru∆u

r(u, v)

Figure 14.16: approximate T (D∗)

The the Jacobian J is again, as 2D case, the determinant of the derivative

DT

J =
∂(x, y, z)

∂(u, v, w)
= det







∂x
∂u ,

∂x
∂v ,

∂x
∂w

∂y
∂u ,

∂y
∂v ,

∂y
∂w

∂z
∂u ,

∂z
∂v ,

∂z
∂w






.

The absolute value of this determinant is equal to the volume of paral-

lelepiped determ’d by the following vectors

Tu =
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k

Tv =
∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k

Tw =
∂x

∂w
i+

∂y

∂w
j+

∂z

∂w
k,

which is the absolute value of the triple product (recall Chap. 12.4)

|(Tu ×Tv) ·Tw| = |J |.

Caution: Three vectors Tu,Tv ,Tw are column vectors of DT , but since

det(A) = det(AT ) for any square matrix, we have

J =
∂(x, y, z)

∂(u, v, w)
= det

[

Tu, Tv, Tw

]

.

Theorem 14.8.7. If T is a C1- map from D∗ onto D in R
3 and f : D ⊂
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(u, v, w)

D∗

T

T =





−1.5u− 0.2v − 0.1uv + 0.2w2

−0.1u+ 0.7v + 0.1w
w + 0.1uv − 0.1u2 − 0.2v2





(x, y, z)

D

Figure 14.17: Deformed box and parallelepiped generated by tangent vectors.

R
3 → R is continuous, then

∫∫∫

D
dxdydz =

∫∫∫

D∗

|J | dudvdw, (14.9)

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

f(T (u, v, w))|J | dudvdw. (14.10)

Example 14.8.8. Evaluate

∫ 3

0

∫ 4

0

∫ y/2+1

y/2

(

2x− y

2
+
z

3

)

dxdydz

using the transformation

u = (2x− y)/2, v = y/2, w = z/3. (14.11)

sol. We see

x = u+ v, y = 2v, z = 3w. (14.12)

We see

J(u, v) =

∣

∣

∣

∣

∣

∣

∣

∂x
∂u ,

∂x
∂v ,

∂x
∂w

∂y
∂u ,

∂y
∂v ,

∂y
∂w

∂z
∂u ,

∂z
∂v ,

∂z
∂w

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1 1 0

0 2 0

0 0 3

∣

∣

∣

∣

∣

∣

∣

= 6.

One can find the limits of integration we obtain



14.8. SUBSTITUTION-CHANGE OF VARIABLES 23

Table 14.3: Limit of integration for Example ??
xyz eq. for boundary uvw eq. for boundary Simplified eq.

x = y/2 u+ v = 2v/2 u = 0

x = y/2 + 1 u+ v = 2v/2 + 1 u = 1

y = 0 2v = 0 v = 0

y = 4 2v = 4 v = 2

z = 0 3w = 0 w = 0

z = 3 3w = 3 w = 1

∫∫∫

D
fdxdydz =

∫ 1

0

∫ 2

0

∫ 1

0
(u+ w) |J |dudvdw

= 6

∫ 1

0

∫ 2

0

[

u2

2
+ uw

]1

0

dvdw

= 6

∫ 1

0

∫ 2

0

(

1

2
+ w

)

dvdw

= 6

∫ 1

0
(1 + 2w) dw = 12.

Spherical Coordinate - revisited

Example 14.8.9. Derive the integration formula in spherical coordinate using

Theorem ??.

sol. Spherical coordinate is given by

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.
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The Jacobian of the mapping (ρ, φ, θ) → (x, y, z) is

∂(x, y, z)

∂(ρ, φ, θ)
=

∣

∣

∣

∣

∣

∣

∣

∂x
∂ρ

∂x
∂φ

∂x
∂θ

∂y
∂ρ

∂y
∂φ

∂y
∂θ

∂z
∂ρ

∂z
∂φ

∂z
∂θ

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0

∣

∣

∣

∣

∣

∣

∣

= ρ2 sinφ(cos2 φ+ sin2 φ) = ρ2 sinφ.

Hence

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

F (ρ, φ, θ)ρ2 sinφdρ dφ dθ.

Here F (ρ, φ, θ) means f(x(ρ, φ, θ), y(ρ, φ, θ), z(ρ, φ, θ)).



Chapter 15

Integral of Vector Fields

15.1 Line Integrals

Line integral(Path integral) of a scalar function

Let C be a C1- curve x(t) = r(t) = (x(t), y(t), z(t)) : [a, b] → C ⊂ R
3. Let

P : a = t0 < t1 < · · · < tk = b be the partition of [a, b]. Then the Riemann

sum of f : C → R is

k
∑

i=1

f(x(t∗i ))∆si =

k
∑

i=1

f(x(t∗i ))‖x(ti)− x(ti−1)‖ =

k
∑

i=1

f(x(t∗i ))∆si.

Definition 15.1.1. We define the line integral of f over C as:

∫

C
f(x, y, z)ds =

∫ b

a
f(g(t), h(t), k(t))‖v(t)‖dt =

∫ b

a
f(x(t))‖x′(t)‖ dt.

Here s(t) is the arc length parameter:

s(t) =

∫ t

0
‖v(τ)‖dτ

Example 15.1.2. Find path integral of f(x, y, z) = x2+y2+z2 over C where

x(t) = (cos t, sin t, t), t ∈ [0, 2π].

25
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sol. Since x′(t) = (− sin t, cos t, 1), the line integral is

∫

C
f ds =

∫ 2π

0
f(x(t))‖x′(t)‖ dt

=

∫ 2π

0
(cos2 t+ sin2 t+ t2)‖(− sin t, cos t, 1)‖ dt

=

∫ 2π

0
(1 + t2)

√
2 dt

=
√
2
(

2π + 8π3/3
)

.

Mass and Moment of a wire

Imagine coils or springs and wires as masses distributed along smooth curves

in space.

When a curve C is parameterized by r(t) = x(t)i+ y(t)j+ z(t)k, a ≤ t ≤ b,

the density of wire is δ(x(t), y(t), z(t)).

M =
∫

C δ ds

Myz =
∫

C xδ ds

Mzx =
∫

C yδ ds

Mxy =
∫

C zδ ds

x̄ =
Myz

M , ȳ = Mzx

M , z̄ =
Mxy

M .

moment of inertia about the axis and the line L

Ix =
∫

C(y
2 + z2)δ ds, Iy =

∫

C(x
2 + z2)δ ds, Iz =

∫

C(x
2 + y2)δ ds, IL =

∫

C r
2δ ds.

15.2 Line integral of Vector fields: Work, Circula-

tion and Flux

Vector fields, Gradient fields and potentials

Given real C1- function f(x1, x2, . . . , xn), we define the gradient field by

∇f := (
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn
).

f is called the potential function.
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Line Integrals of Vector Fields

The Rieman sum of a vector field along a curve is a work defined by

n−1
∑

i=0

F(x(t∗i )) ·∆xi =
n−1
∑

i=0

F(x(ti)) · [x(ti +∆t)− x(ti)].

Taking the limit

lim
n→∞

n−1
∑

i=0

F(x(t∗i )) ·∆xi = lim
n→∞

n−1
∑

i=0

F(x(ti)) ·
∆xi

∆t
∆t

=

∫ b

a
F(x(t)) · x′(t)dt.

∫ b

a
F(x(t)) · x′(t)dt =

∫ b

a

[

F(x(t)) · x′(t)

‖x′(t)‖

]

‖x′(t)‖dt

=

∫ b

a
[F(x(t)) ·T(t)] ‖x′(t)‖dt

=

∫

C
(F ·T) ds ≡

∫

C
F · dx.

Line integral with resp. to dx, dy or dz

Suppose the vector field

F(x, y, z) =M(x, y, z)i +N(x, y, z)j + P (x, y, z)k

is given and

r(t) ≡ x(t) = x(t)i+ y(t)j+ z(t)k, a ≤ t ≤ b

is a smooth curve.Then recalling r′(t) = dx
dt i+

dy
dt j+

dz
dtk, we see

∫ b

a
F(r(t))·dr =

∫ b

a
(M,N,P )·(dx

dt
,
dy

dt
,
dz

dt
)dt =

∫

C
Mdx+Ndy+Pdz. (15.1)
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Flow integrals and circulation of velocity fields

Definition 15.2.1. If F is a continuous vector field and T is unit tangent

vector on C, then the flow of F along C is

∫

C
F ·T ds.

If the curve is closed, then the flow is called the circulation of F along C.

Example 15.2.2. Let F(x, y, z) = xi+ zj+ yk. Find the flow of F along the

helix r(t) = cos ti+ sin tj+ tk, 0 ≤ t ≤ π/2.

sol.
dr

dt
= (− sin t, cos t, 1).

∫

C
F · dr

dt
=

∫ π/2

0
(− sin t cos t+ t cos t+ sin t) dt

=

[

cos2 t

2
+ t sin t

]
π
2

0

=
π

2
− 1

2
.

Flux across a simple closed plane curve

Definition 15.2.3. If C is a smooth simple closed curve in the domain of a

continuous vector field F and n is unit outward normal vector on C, the flux

of F across C is

∫

C
F · n ds.

Calculating flux across a simple closed plane curve:

Let (x(t), y(t)) be a parametrization of C and F(x, y) = M(x, y)i +N(x, y)j.

Then the unit tangent vector is T = dx
ds i+

dy
ds j, and unit normal vector is

n =
dy

ds
i− dx

ds
j.

Hence the flux is
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x y

z

t

k
n

Figure 15.1: Outward normal n = t× k directs the rhs of a walking man

∫

C
F · n ds =

∫

C

(

M
dy

ds
−N

dx

ds

)

ds =

∮

C
Mdy −Ndx. (15.2)

Example 15.2.4. Find the flux of F(x, y, z) = (x − y)i + xj along the circle

x2 + y2 = 1. r(t) = cos ti+ sin tj (0 ≤ t ≤ 2π).

sol. We see dr
dt = (− sin t, cos t). Hence

dy = cos t, dx = sin t.

Since

M = x− y = cos t− sin t, N = x = cos t

we see the flux is

∫

C
Mdy −Ndx =

∫ 2π

0
(cos2 t− sin t cos t+ sin t cos t) dt

=

∫ 2π

0
cos2 t dt =

∫ 2π

0

1 + cos 2t

2
dt

=

[

t

2
+

sin 2t

4

]2π

0

= π.
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b

b

C1

C2

Figure 15.2: Two curves having the same end points

15.3 Path independence, conservative vector fields

Definition 15.3.1. A line integral a vector field F is called path indepen-

dent if
∫

C1

F · dr =

∫

C2

F · dr (15.3)

for any two oriented curves C1, C2 lying in the domain of F having same end

points. The field is called conservative.

A vector field F is called a gradient vector field if F = ∇f for some real

valued function f. Thus

F =
∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.

The function f is called a potential of F.

Example 15.3.2. A gravitational force field has the potential function f =
GmM

r (r = (x, y, z), r =
√

x2 + y2 + z2).

F = −GmM
r3

r = ∇f.

sol. We take derivative of r2 = x2 + y2 + z2, i.e., 2r ∂r
∂x = 2x, 2r ∂r∂y =

2y, 2r ∂r∂z = 2z. Thus

∇f = −GmM
r2

(
∂r

∂x
,
∂r

∂y
,
∂r

∂z
) = −GmM

r3
r.
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Theorem 15.3.3. Suppose f : R3 → R is class C1 and r : [a, b] → R
3 is

smooth curve C and F is a continuous gradient field such that F = ∇f . Then
∫

C
F · dr =

∫ b

a
∇f(r(t)) · r′(t)dt =

∫ b

a

d

dt
f(r(t))dt = f(r(b))− f(r(a)).

In other words, the gradient field is conservative.

Definition 15.3.4. A region R in R
2 or R

3 is called simply connected if

every closed curve C in R can be continuously shrunk to a point (contractible)

while remaining in R throughout the deformation.

Curl of a vector field in R
3

If F =M i+N j+ Pk = (F1, F2, F3), then ∇× F (≡ curlF) is defined as

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

M N P

∣

∣

∣

∣

∣

∣

∣

∣

=
(∂P

∂y
− ∂N

∂z

)

i+
(∂M

∂z
− ∂P

∂x

)

j+
(∂N

∂x
− ∂M

∂y

)

k

Theorem 15.3.5. (Conservative Field) Let F be a C1-vector field on a

simply connected domain in R
3. Then the following conditions are equivalent:

(1) For any oriented closed curve C,
∫

C F · dx = 0.

(2) For any two oriented curve C1, C2 having same end points,

∫

C1

F · dx =

∫

C2

F · dx.

(3) F is the gradient of some function f , i.e, F = ∇f .

(4) ∇× F = 0.

Component test for conservative field

If a field F = M i + N j + Pk is conservative on a simply connected domain,

then by above Theorem, there exists some function f s.t.

F =M i+N j+ Pk =
∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.



32 CHAPTER 15. INTEGRAL OF VECTOR FIELDS

Hence we can check the following holds: (by taking the derivative)

∂P

∂y
=
∂N

∂z
,

∂M

∂z
=
∂P

∂x
and

∂N

∂x
=
∂M

∂y
. (15.4)

Example 15.3.6. Show that the vector field is conservative and find its po-

tential.

F(x, y, z) = (ex sin y − yz)i+ (ex cos y − xz)j+ (z − xy)k.

sol. One can check (??) or check if the curl F is zero:

∇× F =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

ex sin y − yz ex cos y − xz z − xy

∣

∣

∣

∣

∣

∣

∣

=

(

∂

∂y
(z − xy)− ∂

∂z
(ex cos y − xz)

)

i+

(

∂

∂z
(ex sin y − yz)− ∂

∂x
(z − xy)

)

j

+

(

∂

∂x
(ex cos y − xz)− ∂

∂y
(ex sin y − yz)

)

k = 0.

So the condition (??) holds. To find a potential we need to find and f satisfying

∂f

∂x
= ex sin y − yz,

∂f

∂y
= ex cos y − xz,

∂f

∂z
= z − xy. (15.5)

Thus we proceed as follows: First integrate w.r.t x.

(1) f(x, y, z) =
∫

(ex sin y− yz)dx = ex sin y− xyz+ g(y, z) for some g(y, z).

(2) ∂f
∂y = ex cos y − xz + ∂g

∂y = ex cos y − xz. Thus g(y, z) is a function of z

only, thus g = g(z). Taking derivative of f w.r.t z, we have

(3) ∂f
∂z = −xy + g′(z) = z − xy. Thus g(z) = 1

2z
2 +C.

(4) Hence f(x, y, z) = ex sin y − xyz + 1
2z

2 + C.
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Exact differential form

The expression F1dx + F2dy + F3dz is called a differential form. We can

compute the line integral of a differential form as

∫

C
F1dx+ F2dy + F3dz =

∫ b

a

(

F1x
′(t) + F2y

′(t) + F3z
′(t)
)

dt.

Definition 15.3.7. A differential form is said to be exact if it has the form

Mdx+Ndy + Pdz =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz ≡ df = ∇f · dx.

for some scalar function f.

Component test for exactness

The differential form is exact if and only if (following Theorem ??)

∂P

∂y
=
∂N

∂z
,

∂M

∂z
=
∂P

∂x
and

∂N

∂x
=
∂M

∂y
. (15.6)

This is a consequence of Theorem ?? for conservative field.

Example 15.3.8. Find the potential of the vector field if it is conservative.

F(x, y) = (2xy + cos 2y)i+ (x2 − 2x sin 2y)j.

sol.

First we check that ∂N
∂x = ∂M

∂y . Hence it is conservative. Let f be the

potential function. Then it satisfies ∇f = F, i.e.,

∂f

∂x
= 2xy + cos 2y,

∂f

∂y
= x2 − 2x sin 2y. (15.7)

Thus we proceed as follows:

(1) Integrate: f(x, y) =
∫ ∂f

∂x dx =
∫

2xy + cos 2y dx = x2y + x cos 2y + g(y)

(2) Set ∂f
∂y = x2 − 2x sin 2y + g′(y)

(3) Show g(x, y) = C.

Thus we see f(x, y) = x2 − 2x sin 2y + C.
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Example 15.3.9. Show the form ydx+ xdy + 4dz is exact and evaluate the

integral
∫

C
ydx+ xdy + 4dz.

sol. ...

15.4 Green’s Theorem in the plane

Circulation and flux

(1) The circulation rate measures the spin of the fluid around a

closed curve, which is given
∮

C F · dr =
∮

C Mdx+Ndy.

(2) The flux rate measures the rate at which the fluid leaves out of

the closed curve, which is given
∮

C F · nds =
∮

C Mdy −Ndx.
∮

C
Mdx+Ndy =

∫∫

R

(

∂N

∂x
− ∂M

∂y

)

dxdy.

∮

C
Mdy −Ndx =

∫∫

R

(

∂M

∂x
+
∂N

∂y

)

dxdy.

Relation with 3D curl

If F = M(x, y)i + N(x, y)j is two dimensional vector field, then it can be

considered as a three dimensional vector field as F =M(x, y)i+N(x, y)j+0·k.
The curl F can be computed :

curl F =
(∂P

∂y
− ∂N

∂z

)

i+
(∂M

∂z
− ∂P

∂x

)

j+
(∂N

∂x
− ∂M

∂y

)

k

=
(∂N

∂x
− ∂M

∂y

)

k.

Definition 15.4.1. The circulation density of F is the expression ∂N
∂x − ∂M

∂y ,

also called the k - component of the curl denoted by (curlF) · k.
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Physical meaning:

(1) The integral of a circulation around a closed curve is the same as

the integral of the curl of F on the region enclosed by the curve.

(2) Normal component of curl F is the rate of rotation along the

plane.

Green’s Theorem

O a b

y = φ1(x)

y = φ2(x)

C1

C2

x

y

O

c

d

x = ψ1(y) x = ψ2(y)

C1 C2

x

y

Figure 15.3: As type 1 region and boundary

Theorem 15.4.2. (Green’s theorem: Circulation-Curl form) Let D be

a closed bounded, region in R
2 with boundary ∂D Then

∮

∂D
F ·T ds =

∮

∂D
M dx+N dy =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy.

The integral of the circulation around a ∂D is the integral of curl F·k
on D.

Proof. Assume D is a region of type 1 given as follows:

D = {(x, y)| a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}.

We decompose the boundary of D as ∂D = C+
1 + C−

2 (fig ??). Using the
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Fubini’s theorem, we can evaluate the double integral as an iterated integral

∫∫

D
−∂M(x, y)

∂y
dxdy =

∫ b

a

∫ φ2(x)

φ1(x)
−∂M(x, y)

∂y
dydx

=

∫ b

a
[M(x, φ1(x))−M(x, φ2(x))]dx.

On the other hand, C+
1 can be parameterized as x → (x, φ1(x)), a ≤ x ≤ b

and C+
2 can be parameterized as x→ (x, φ2(x)), a ≤ x ≤ b. Hence

∫ b

a
M(x, φi(x))dx =

∫

C+
i

M(x, y)dx, i = 1, 2.

By reversing orientations

−
∫ b

a
M(x, φ2(x))dx =

∫

C−

2

M(x, y)dx.

Hence
∫∫

D
−∂M
∂y

dxdy =

∫

C+
1

M dx+

∫

C−

2

M dx =

∫

∂D
M dx.

Similarly if D is a region of type 2, one can show that

∫∫

D

∂N

∂x
dxdy =

∫

C+
1

Ndy +

∫

C−

2

Ndy =

∫

∂D
N dy.

Here C1 and C2 are the curves defined by x = ψ1(y) and x = ψ2(y) for

c ≤ y ≤ d. The proof is completed.

Theorem 15.4.3. (Green’s theorem: Flux-Divergence form) Let D be a

closed bounded, region in R
2 with boundary C = ∂D with positive orientation.

Suppose F(x, y) =M(x, y)i+N(x, y)j be a vector field of class C1. Then

∮

∂D
F · n ds =

∮

∂D
M dy −N dx =

∫∫

D

(

∂M

∂x
+
∂N

∂y

)

dxdy.

The integral of the outward flux around a ∂D = the integral of divF

on D.

Example 15.4.4. Verify Green’s theorem for

M(x, y) =
−y

x2 + y2
, N(x, y) =

x

x2 + y2
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C1

C2

x

y

O

D1
D2

D3
D4

Figure 15.4: Apply Green’s theorem to each of the regions

on D = {(x, y)| h2 ≤ x2 + y2 ≤ 1}, 0 < h < 1.

1h

D

C1

Ch

x

y

O

D

C∗

Ch

x

y

O

Figure 15.5: Domains for Example ?? and Example ??

sol. The boundary of D consists of two circles.

C1 : x = cos t, y = sin t, 0 ≤ t ≤ 2π

Ch : x = h cos t, y = h sin t, 0 ≤ t ≤ 2π.

In the curve ∂D = Ch ∪ C1, C1 is oriented counterclockwise while Ch

is oriented clockwise. Since M,N are class C1 in the annuls D, we can use

Green’s theorem. Since

∂M

∂y
=

(x2 + y2)(−1) + 2y

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
=
∂N

∂x

we have
∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy =

∫

D
0 dxdy = 0.
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On the other hand,

∫

∂D
Mdx+Ndy =

∫

C1

xdy − ydx

x2 + y2
+

∫

Ch

xdy − ydx

x2 + y2

=

∫ 2π

0
(cos2 t+ sin2 t)dt+

∫ 0

2π

h2(cos2 t+ sin2 t)

h2
dt

= 2π − 2π = 0.

Hence
∫

∂D
Mdx+Ndy = 0 =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy.

Example 15.4.5. Evaluate
∫

C
xdy−ydx
x2+y2 where C∗ is any closed curve around

the origin.

sol. Since the integrand is not continuous at (0, 0), we cannot use Green’s

theorem on the interior of C∗. But if we remove a small circle of radius h

around the origin, we can use the Green’s theorem on the region bounded by

C∗ and Ch (Fig ??) as in the previous example to see

∫

C∗

Mdx+Ndy = −
∫

Ch

Mdx+Ndy.

Now the integral −
∫

Ch
(Mdx + Ndy) can be computed by polar coordinate:

From

x = h cos θ, y = h sin θ,

dx = −h sin θdθ,
dy = h cos θdθ,

we see
xdy − ydx

x2 + y2
=
h2(cos2 θ + sin2 θ)

h2
dθ = dθ.

Hence
∫

C∗

xdy − ydx

x2 + y2
= 2π.
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Vector Form using the Curl

Any vector field in R
2 can be treated as a vector field in R

3. For example,

the vector field F = M i + N j on R
2 can be viewed as F = M i + N j + 0k.

Then we can define its curl and it can be shown that the curl is (compute!)

(∂N/∂x − ∂M/∂y)k. Then we obtain

(curlF) · k =

[

(∂N

∂x
− ∂M

∂y

)

k

]

· k =
(∂N

∂x
− ∂M

∂y

)

.

Hence by Green’s theorem,

∫

∂D
F·dx =

∫

∂D
Mdx+Ndy =

∫∫

D

(∂N

∂x
− ∂M

∂y

)

dxdy =

∫∫

D
(∇×F)·k dxdy.

This is a vector form of Green’s theorem.

Theorem 15.4.6. (Vector form of Green’s theorem) Let D ⊂ R
2 be

region with ∂D. If F =M i+N j is a C1-vector field on D then

∫

∂D
F · dx =

∫∫

D
(curl F) · k dxdy =

∫∫

D
(∇× F) · k dxdy.

15.5 (Parameterized) Surfaces and Surface area

Definition 15.5.1. A parameterized surface is a (one-to-one) function

r : D ⊂ R
2 → R

3

r(u, v) = (x(u, v), y(u, v), z(u, v)).

Normal Vectors, Tangent Planes, and Surface Area

First look at the case when the surface is the graph of f : D → R. Then we

have

r(x, y) = (x, y, f(x, y)).

First fix y = y0 and then x = x0. The derivatives of r in the direction of x-axis

and y-axis at r(x0, y0) = (x0, y0, f(x0, y0)) are

rx(x0, y0) = i+ fx(x0, y0)k, ry(x0, y0) = j+ fy(x0, y0)k.
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These are nothing but the tangent vectors to the curves r(x, y0) and r(x0, y),

respectively. Hence the normal vector is given by the cross product

rx(x0, y0)× ry(x0, y0) = (i+ fx(x0, y0)k)× (j+ fy(x0, y0)k)

=

∣

∣

∣

∣

∣

∣

∣

i j k

1 0 fx(x0, y0)

0 1 fy(x0, y0)

∣

∣

∣

∣

∣

∣

∣

= −fx(x0, y0)i− fy(x0, y0)j+ k.

In general, consider the surface parameterized by

r(x(u, v), y(u, v)) = (x(u, v), y(u, v), z(u, v)).

Then we see two tangent vectors are

ru =
∂r

∂u
=
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k

∣

∣

∣

∣

(u0,v0)

rv =
∂r

∂v
=
∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k

∣

∣

∣

∣

(u0,v0)

These are obtained by considering the cross sections with the planes v = v0

and u = u0, respectively. If the normal vector

N = ru × rv =
∂r

∂u
× ∂r

∂v

is nonzero, then we say the surface is smooth.

Definition 15.5.2. When N is a normal vector to a surface r, the tangent

plane at r(u0, v0) = (x0, y0, z0) is defined by

N · (x− x0, y − y0, z − z0) = 0.

Example 15.5.3. Consider the surface given by

x = u cos v, y = u sin v, z = u2 + v2.

Find the tangent plane at r(1, 0).
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N

rv

ru

x

y

z

x

y

z

ellipsoid: (a sinφ cos θ, b sinφ sin θ, c cos φ)

Figure 15.6: Coord. curves, Tangent vectors and normal vectors to a surface

sol. Since r(u, v) = (u cos v, u sin v, u2 + v2) we have

rv = (cos v, sin v, 2u), rv = (−u sin v, u cos v, 2v).

Hence we see ru × rv = (−2u2 cos v + 2v sin v,−2u2 sin v − 2v cos v, u). Since

r(1, 0) = (1, 0, 1) and N = ru × rv(1, 0) = (−2, 0, 1), we see the tangent plane

is given as

−2(x− 1) + 0(y − 0) + 1(z − 1) = 0.

Area of Parameterized Surface

Recall 2-D case: When r : D → R is a transformation in R
2. Consider the

small rectangle A = [u, u +∆u] × [v +∆v]. The two tangent vectors (∆u, 0)

and (0,∆v) are mapped to the boundary of image r(A) at r(u, v) as

ru∆u, rv∆v.

These vectors form a parallelogram approximating the region r(A)(figure ??).

The area of the parallelogram is

∣

∣

∣

∣

∣

∂x
∂u∆u

∂x
∂v∆v

∂y
∂u∆u

∂y
∂v∆v

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∆u∆v =
∂(x, y)

∂(u, v)
∆u∆v.

‖ru × rv‖∆u∆v = |J |∆u∆v.
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Hence we have
∫∫

R
dxdy =

∫∫

D
|J |dudv.

u
∆u

v

∆v

x

y

rv∆v

ru∆u

r(u, v)

Figure 15.7: approximate r(A)

Now we consider a surface lying in space: r : D → R
3. Divide the domain

D into small rectangles of the form A = [u, u+∆u]× [v, v +∆v]. The image

of A under r is a portion of the surface having four corners at

r(u, v), r(u+∆u, v), r(u, v +∆v), r(u+∆u, v +∆v).

This surface can be approximated by a parallelogram whose sides are given

by(fig ??) ru(u, v)∆u and rv(u, v)∆v, where

ru = ∂r
∂u = ∂x

∂u i+
∂y
∂u j+

∂z
∂uk

rv = ∂r
∂v = ∂x

∂v i+
∂y
∂v j+

∂z
∂vk.

(15.8)

Hence the area of r(A) is (again like 2D) approximated by

‖ru × rv‖∆u∆v.

Hence the area of the surface is the limit of sum of these.

Definition 15.5.4. We define the surface area A(S) of a parameterized sur-

face S by

A(S) =

∫∫

S
dS =

∫∫

D
‖ru × rv‖dudv.

We call dσ = dS := ‖ru × rv‖dudv the surface area differential. Then
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X

O

(0,∆v)
(∆u, 0)

A

D

x

z

yO

ru∆u

rv∆v

r(A)

S

Figure 15.8: Approx. area of surface by a tangent plane

we see that 1

∫∫

r(D)
dS =

∫∫

D
‖ru × rv‖dudv.

Example 15.5.5 (Cone). Let D be the surface of a cone given by

x = r cos θ, y = r sin θ, z = r, 0 ≤ r ≤ 1.

sol. Compute directly using ‖rr × rθ‖drdθ. We see that ‖rr × rθ‖ = r
√
2.

Hence the area is

∫∫

r(D)
dS =

∫∫

D
‖rr × rθ‖drdθ

=

∫∫

D
r
√
2drdθ

=

∫ 2π

0

∫ 1

0
r
√
2drdθ = π

√
2.

Example 15.5.6 (Football like surface). Find the area of the surface of rev-

olution of the curve x = cos z, y = 0, |z| ≤ π/2 around z-axis.

1
r is assumed to be 1-1.
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sol. The surface of revolution is parameterized by

r(u, v) = (x, y, z), x = cos u cos v, y = cos u sin v, z = u,−π
2
≤ u ≤ π

2
, 0 ≤ v ≤ 2π.

We see

ru = − sinu cos vi− sinu sin vj+ k

rv = − cos u sin vi+ cos u cos vj.

Compute ‖rr × rθ‖.

x

y

z

θ

ru × rv =

∣

∣

∣

∣

∣

∣

∣

i j k

− sinu cos v − sinu sin v 1

− cos u sin v cos u cos v 0

∣

∣

∣

∣

∣

∣

∣

= − cosu cos vi− cos u sin vj− (sinu cos u)k

‖ru × rv‖ = cosu
√

1 + sin2 u

Hence the area is

A =

∫ 2π

0

∫ π/2

−π/2
cos u

√

1 + sin2 u dudv

= 2

∫ 2π

0

∫ π/2

0

√

1 + t2 dtdv( need table)

=

∫ 2π

0

[

t
√

1 + t2 + ln(t+
√

1 + t2)
]1

0
dv

= 2π
[√

2 + ln(1 +
√
2)
]

.

Implicit Surfaces

Assume a surface is defined implicitly by

F (x, y, z) = c.
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In this case, it is not easy to find the explicit form of parametrization. However,

we can still compute

dS =

∥

∥

∥

∥

(
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k)× (

∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k)

∥

∥

∥

∥

dudv (15.9)

from the implicit expression. Assume the surface is defined over a region R

having k as the unit normal vector. Define the parameters x = u, y = v then

z(x, y) = z(u, v).

x
y

z

k

R

Figure 15.9: Implicit surface F (x, y, z) = c with normal vector k on R

Assume the surface has the following parametrization

r(u, v) = ui+ vj+ h(u, v)k. (15.10)

Then

ru = i+
∂h

∂u
k and rv = j+

∂h

∂v
k. (15.11)

Taking derivative w.r.t x (and y resp.) using implicit differentiation, we get

Fx +
∂z

∂x
= 0 and Fy +

∂z

∂y
= 0.

From this we get
∂h

∂u
= −Fx

Fz
and

∂h

∂v
= −Fy

Fz
.

Hence

ru = i− Fx

Fz
k and rv = −Fy

Fz
k (15.12)
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and

ru × rv =
Fx

Fz
i+

Fy

Fz
j+ k

=
1

Fz
(Fxi+ Fyj+ Fzk)

=
∇F
Fz

=
∇F

∇F · k .

The area of implicit surface F (x, y, z) = c defined over R is

∫∫

R

|∇F |
|∇F · p|dA,

where p = i, j or k is the normal to R and ∇F · p 6= 0.

Example 15.5.7. Find the area of surface of paraboloid x2 + y2 − z = 0

between 0 ≤ z ≤ 4.

sol. Let F (x, y, z) = x2 + y2 − z so that ∇F = 2xi+2yj−k. ∇F ·k = −1.

With D = {x2 + y2 ≤ 4}, the area is

A =

∫∫

D

√

4x2 + 4y2 + 1dxdy

=

∫ 2π

0

∫ 2

0

√

4r2 + 1rdrdθ

=

∫ 2π

0

1

12

[

(4r2 + 1)3/2
]2

0
dθ

=
π

6
(17

√
17− 1).

Surface Area of a Graph

When a surface S is given by the graph of function z = f(x, y) on D, we see

U is parameterized by r(x, y) = (x, y, f(x, y)). Find rx, ry by

rx = i+ fxk, ry = j+ fyk.

This corresponds to above case with F (x, y, z) = z − f(x, y).

Since

rx × ry = (i+ fxk)× (j+ fyk) = −fxi− fyj+ k,
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the area is
∫∫

r(D)
dS =

∫∫

D

√

(fx)
2 + (fy)

2 + 1dxdy.

Geometric interpretation

We refer to figure ??. The unit normal vector N(x, y, z) on S is

N(x, y, z) = −fxi− fyj+ k.

We can find the formula using the angle between N and k. Let ϕ be the angle

between N and k. Then cosϕ satisfies

cosϕ =
N · k
‖N‖ =

1
√

(fx)
2 + (fy)

2 + 1
.

Hence

dS =

√

(fx)
2 + (fy)

2 + 1dxdy =
dxdy

cosϕ
,

and we get
∫∫

r

dS =

∫∫

D

dxdy

cosϕ
.

kN

θ

Figure 15.10: Ratio between two surface area is the cosine of angle

Example 15.5.8. Find the surface area of a unit ball.
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sol. From x2 + y2 + z2 = 1, we let z = f(x, y) =
√

1− x2 − y2.

∂f

∂x
=

−x
√

1− x2 − y2
,

∂f

∂y
=

−y
√

1− x2 − y2
.

Area of the half sphere is

∫∫

S
dS =

∫∫

D

1
√

1− x2 − y2
dxdy

=

∫ 2π

0

∫ 1

0

r√
1− r2

drdθ

= 2π.

Example 15.5.9. Let r = (r cos θ, r sin θ, θ) be the parametrization of a

helicoid-like surface S, where 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Suppose S is covered

with a metal of density m which equal to twice the distance to the central axis,

i.e, m = 2
√

x2 + y2 = 2r. Find the total mass of metal covering the surface.

sol. First we can show ‖rr × rθ‖ =
√
1 + r2. Hence we have

M =

∫∫

S
2rdS = 2

∫∫

D
r‖rr × rθ‖drdθ

=

∫ 2π

0

∫ 1

0
2r
√

1 + r2drdθ =
4

3
π(23/2 − 1).

15.6 Surface Integrals

Integrals of Scalar functions over Surface

Definition 15.6.1. Let S be a surface parameterized by r(u, v) = (x(u, v), y(u, v), z(u, v)),

where (u, v) ∈ D. Then the surface integral of a scalar function f(x, y, z) de-

fined on S is

∫∫

S
f dS =

∫∫

D
f(x(u, v), y(u, v), z(u, v))‖ru × rv‖dudv.
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Surface integrals over graphs

Suppose S is the graph of a C1 function z = g(x, y). Then we parameterize it

by

x = u, y = v, z = g(u, v)

and

‖ru × rv‖ =
√

1 + (gu)2 + (gv)2.

So the integral of f on S becomes

∫∫

S
f(x, y, z) dS =

∫∫

D
f(x, y, g(x, y))

√

1 + (gx)2 + (gy)2 dxdy.

Example 15.6.2. Evaluate
∫∫

S z
2dS when S is the unit sphere.

sol. The unit sphere is described by

r(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ), (0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π).

Since

‖rφ × rθ‖ = sinφ

and z2 = cos2 φ, we have

∫∫

S
z2dS =

∫∫

D
cos2 φ‖rθ × rφ‖dφdθ

=

∫ 2π

0

∫ π

0
cos2 φ sinφdφdθ

=
4π

3
.

Example 15.6.3. Evaluate
∫∫

S G(x, y, z)dS over a football like surface S

x = cos u cos v, y = cos u sin v, z = u,−π
2
≤ u ≤ π

2
, 0 ≤ v ≤ 2π

when G(x, y, z) =
√

1− x2 − y2.

sol. Over the football surface the function G is given by

√

1− x2 − y2 =
√

1− cos2 u = | sinu|.
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The surface differential is (Ref. Example ??)

dS = cos u
√

1 + sin2 ududv.

Hence

∫∫

S

√

1− x2 − y2dS =

∫ 2π

0

∫ π/2

−π/2
| sinu| cos u

√

1 + sin2 ududv

= 2

∫ 2π

0

∫ π/2

−π/2
| sinu| cos u

√

1 + sin2 ududv

=

∫ 2π

0

∫ 2

1

√
wdwdv

= 2π · 2
3
w3/2|21 =

4π

3
(2
√
2− 1).

Example 15.6.4. Evaluate
∫∫

S

√

x(1 + 2z)dS where S = {z = y2/2, x, y ≥
0, x+ y ≤ 1}.

sol. This is an integral over a graph of a function. Let z = g(x, y) = y2/2

so that the surface differential is

dS =
√

g2x + g2y + 1dxdy =
√

y2 + 1dxdy.

The surface area is

∫∫

S

√

x(1 + 2z)
√

y2 + 1dxdy =

∫ 1

0

∫ 1−x

0

√
x(y2 + 1)dydx

=

∫ 1

0

√
x((1− x) +

1

3
(1− x)3)dx.

Orientation

Let r : D → R
3 represent an oriented surface. If n(r) is the unit normal to S,

then

n(r) = ± ru × rv
‖ru × rv‖

.

We choose a parametrization so that the sign is positive (orientation-preserving)
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Surfaces Integrals of vector Fields

Definition 15.6.5. The surface integral of F on a surface S is the surface

integral of normal projection of F to the surface S.

∫∫

S
F · n dσ =

∫∫

S
F · n dS.

If F represents the velocity of a fluid, then the surface integral is the amount

of fluid that passes through the surface (per unit time).

Since n = ru × rv/‖ru × rv‖ is the unit normal vector to the surface,

∫∫

S
F · n dS =

∫∫

D
F · n‖ru × rv‖dudv

=

∫∫

D
F · ru × rv

‖ru × rv‖
‖ru × rv‖ dudv

:=

∫∫

r(D)
F · dS.

Example 15.6.6. Find the flux of F = yzi+ xj− z2k through the surface S

given by

y = x2, 0 ≤ x ≤ 1, 0 ≤ z ≤ 4.

sol. We can parameterize the surface using (x, z). r = xi+ x2j+ zk. So

rx = i− 2xj, rz = k

rx × rz = 2xi− j

n =
2xi− j√
4x2 + 1

.

On the surface

F = yzi+ xj− z2k = x2zi+ xj− z2k.

Hence
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F · n =
1√

4x2 + 1
(x2z · 2x− x)

=
2x3z − x√
4x2 + 1

,

∫∫

S
F · ndS =

∫ 4

0

∫ 1

0

2x3z − x√
4x2 + 1

‖rx × rz‖dxdz

=

∫ 4

0

∫ 1

0
(2x3z − x)xdz = 2.

Example 15.6.7. Let S be the unit sphere parameterized by

r(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ), (0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π).

Compute
∫∫

S r · dS, where r = xi+ yi+ zk denotes the position vector.

sol. We see

rφ = cosφ cos θi+ cosφ sin θj− sinφk,

rθ = − sinφ sin θi+ sinφ cos θj,

rφ × rθ = sinφ(cos θ sinφi+ sin θ sinφj+ cosφk).

Hence r · dS = r · (rφ × rθ)dφ dθ = sinφdφdθ and

∫∫

S
r · dS =

∫ 2π

0

∫ π

0
sinφdφdθ = 4π.

Surface Integral of vector fields over Graphs

Suppose S is the graph of z = g(x, y). We parameterize the surface S by

r(x, y) = (x, y, g(x, y)) and compute

rx = i+ gxk, ry = j+ gyk.

Hence

rx × ry = −(gx)i− (gy)j+ k
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and we see

∫∫

S
F · dS =

∫∫

D
F · (rx × ry)dxdy =

∫∫

D
[F1(−gx) + F1(−gy) + F3] dxdy.

v · dS
v

dSv

F

r(u,v)
U=r(D)

Figure 15.11: Area of shadow region and flux across S

Example 15.6.8 (Gauss Law). The flux of an electric field E over a closed

surface S is the net charge Q contained in the surface. Namely,

∫∫

S
E · dS = Q.

Suppose E = En(constant multiple of the unit normal vector) then

∫∫

S
E · dS =

∫∫

S
EdS = Q = E · A(S).

So E = Q
A(S) and if S is sphere of radius R then

E =
Q

4πR2
. (15.13)
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Example 15.6.9. Given a disk lying on the plane z = 12 described by

z = 12, x2 + y2 ≤ 25,

compute
∫∫

S r · dS where r = xi+ yj+ zk.

sol. We see

rx × ry = i× j = k.

So r · (rx × ry) = z and

∫∫

S
r · dS =

∫∫

D
zdxdy = 12A(D) = 300π.

Summary

(1) Given a parameterized surface r(u, v)

(a) Surface integral of a scalar function f :

∫∫

r(D)
fdS =

∫∫

D
f(r(u, v))‖ru × rv‖dudv

(b) Scalar surface element:

dS = ‖ru × rv‖dudv

(c) Integral of a vector field:

∫∫

r(D)
F · dS =

∫∫

D
F(r(u, v)) · (ru × rv) dudv =

∫∫

S
(F · n) dS

(d) Vector surface element:

dS = (ru × rv) dudv = n dS

(2) When the surface is given by a graph z = g(x, y)

(a) Integral of a scalar f :

∫∫

S
fdS =

∫∫

D
f(x, y, g(x, y))

√

(gx)
2 + (gy)

2 + 1 dxdy
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(b) Scalar surface element:

dS =
dx dy

cos θ
=

√

(gx)
2 + (gy)

2 + 1 dxdy

(c) Integral of a vector field:

∫∫

S

F · dS =

∫∫

D
(−F1gx − F2gy + F3) dxdy

(d) Vector surface element:

dS = n dS = (−gxi− gyj+ k) dxdy

15.7 Stokes’ Theorem

n

b

bb
b

bb
b

n

n

S

∂S

S

∂S

Figure 15.12: Orientation by right handed rule

Stokes’ theorem is the generalization of Green’s theorem to the surface

lying in R
3: Consider a simple closed curve lying in R

3 and a surface having

the curve as boundary: Caution: there are many surfaces having the same

curve as boundary. But as long as the vector fields are C1 in a large region

containing the curve and the surface, any surface play the same role.
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Recall : the curl of F: F = F1i+ F2j+ F3k, then

∇× F = curlF =
(∂F3

∂y
− ∂F2

∂z

)

i+
(∂F1

∂z
− ∂F3

∂x

)

j+
(∂F2

∂x
− ∂F1

∂y

)

k

=

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem 15.7.1 (Stokes’ theorem). Let S be a piecewise smooth oriented

surface. Suppose the boundary ∂S consists of finitely many piecewise C1 curve

with the same orientation with S. Let F =M i+N j+Pk be a C1-vector field

defined on S. Then

∫∫

S
(∇× F) · ndS =

∫

∂S
F · dr.

For a 2D surface this reduces to the Green’s Theorem:

∫∫

S
(∇× F) · kdA =

∫∫

S

(∂N

∂x
− ∂M

∂y

)

dxdy =

∮

∂S
F · dr.

Corollary 15.7.2. If S1 and S2 are two surfaces having the same boundary,

then
∫∫

S1

(∇× F) · ndS =

∫∫

S2

(∇× F) · ndS.

Example 15.7.3. Let S be smooth surface having an oriented simple closed

curve C as boundary and let F = yezi+ xezj+ xyezk. Compute
∫

C F · dr.

curlF =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

yez xez xyez

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

By Stoke’s theorem,

∫

C
F · dr =

∫∫

S
curlF · dS = 0.

Example 15.7.4. Calculate the circulation of F = (x2 − y)i + 4zj + x2k

around the circle C where the plane z = 2 meets the cone z =
√

x2 + y2,

counterclockwise. (In two ways)

sol. One way is to directly compute the circulation (Easy, skip it). But
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x

y

z

n
C

Surface z = y2 − x2, x2 + y2 ≤ 1 for Example ??

another way is to use Stokes’ theorem on the given surface. This make things

worse!!! (see book Example 4, p. 1019)

However, we can use a flat disc z = 2 having the same curve C as the

boundary. On that disc n = k and ∇×F = −4i− 2xj+ k. ∇×F · n = 1. So

by Stokes theorem,

∮

C
F · dr =

∫∫

S
∇× F · ndS =

∫∫

x2+y2≤4
1dA = 4π.

Example 15.7.5. Consider a surface S formed by hyperbolic paraboloid z =

y2−x2 lying inside the cylinder of radius one around z axis and the boundary

curve C. (Fig ??) Compute the circulation of F = yi − xj + x2k around

C.(assume normal vector has positive k component on S)

sol. First we find the boundary curve C. Since it is intersection with

cylinder r = 1, we can use

r(t) = cos ti+ sin tj+ (sin2 t− cos2 t)k

We calculate the circulation of F = yi− xj+ x2k around the boundary curve

C.
dr

dt
= − sin ti+ cos tj+ (4 sin t cos t)k

and on the curve r the vector field is

F = sin ti− cos tj+ cos2 tk
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∫ 2π

0
F · dr

dt
dt =

∫ 2π

0

(

− sin2 t− cos2 t+ 4 sin t cos3 t
)

dt

=

∫ 2π

0

(

4 sin t cos3 t− 1
)

dt = −2π

However, the use of Stokes’ theorem for this problem make it worse, terrible!!!

Example 15.7.6. Verify Stokes’ theorem when F = (x2+y)i+(x2+2y)j+2z3k

and C : x2 + y2 = 4, z = 2.

sol. Show that
∫

C F·ds = −4π(easy). Let S be the disk {(x, y, z) : x2+y2 =
4, z = 2}. If n is the unit normal to S, then n = k and

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

x2 + y x2 + 2y 2z3

∣

∣

∣

∣

∣

∣

∣

∣

= (0− 0)i− (0− 0)j+ (2x− 1)k = (2x− 1)k.

Hence

∫

C
F · ds =

∫∫

S
(∇× F) · dS =

∫∫

S
(∇× F) · ndS

=

∫∫

S
(2x− 1)k · kdS =

∫ 2

−2

∫

√
4−y2

−
√

4−y2
(2x− 1)dxdy

= −2

∫ 2

−2

√

4− y2dy = −4π.

Example 15.7.7. Evaluate

∫

C
−y3dx+ x3dy − z3dz

where C is the intersection of the cylinder x2+y2 = 1 and plane x+y+z = 1.

sol. Let F = −y3i + x3j − z3k. Then above integral is
∫

C F · dr. If we

consider any reasonable surface S having C as boundary, we can use Stokes’
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theorem with curlF = 3(x2 + y2)k. Let us assume S is the surface defined by

x+y+z = 1, x2+y2 ≤ 1. A parametrization of S is given by r = (u, v, 1−u−v).
We need to compute

dS = (ru × rv)dudv = ((i− k)× (j− k) = i+ j+ k)dudv.

Hence
∫

C
F · dr =

∫∫

S
curlF · dS =

∫∫

D
3(x2 + y2)dxdy =

3π

2
.

Here the domain D is the set {(x, y)|x2 + y2 ≤ 1}.

Example 15.7.8. A surface S is defined by z = e−(x2+y2) for z ≥ 1/e. Let

F = (ey+z − 2y)i+ (xey+z + y)j+ ex+yk.

Evaluate
∫∫

S ∇× F · dS.

sol. We see

∇× F = (ex+y − xey+z)i+ (ey+z − ex+y)j+ 2k

and

N = 2xe−(x2+y2)i+ 2ye−(x2+y2)j+ k.

So direct computation of
∫

S ∇× F · dS seems almost impossible. Now try to

use Stoke’s theorem. First parameterize the boundary by

x = cos t, y = sin t, z = 1/e.

Then

∫

C
F · dr =

∫

C
(esin t+1/e − 2 sin t, · · · , ecos t+sin t) · (− sin t, cos t, 0) dt

This again is very difficult! Now think of another way. Think of another

surface S′ which has the same boundary as S., i.e, let S′ be the unit disk

x2 + y2 ≤ 1, z = 1/e. Then n = k and hence

∫∫

S
∇× F · dS =

∫∫

S′

∇× F · ndS =

∫∫

S′

2dS = 2π.
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Curl as Circulation - Paddle Wheel interpretation

By Stokes’ theorem,

∫

∂Sρ

F · dr =

∫∫

Sρ

(∇× F) · ndS. (15.14)

Hence dividing equation (??) we see

lim
ρ→0

1

πρ2

∫

∂Sρ

F · ds = lim
ρ→0

1

πρ2

∫∫

Sρ

(∇× F) · ndS

= lim
ρ→0

(∇× F(Q)) · n(Q)

= (∇× F) · n|P .

Thus curl of a vector field measures the circulation.

15.8 Divergence Theorem

We define the divergence of a vector field F as

divF = ∇F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

Physical meaning of divergence: Expansion or compression of a material.

Theorem 15.8.1. [Gauss’ Divergence Theorem] Let Ω be an elementary

region in R
3 and ∂Ω consists of finitely many oriented piecewise smooth closed

surfaces. Let F be a C1 vector field on a region containing Ω. Then

∫∫

∂Ω
F · ndS =

∫∫∫

Ω
divFdV.

The flux of a vector field F across Ω is equal to the integral of divF in Ω.

Example 15.8.2. S is the unit sphere x2+y2+z2 = 1 and F = 2xi+y2j+z2k.

Find
∫∫

S F · ndS.

sol. Let Ω be the region inside S. By Gauss theorem, it holds that

∫∫

S
F · ndS =

∫∫∫

Ω
divFdV.
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Since divF = ∇ · (2xi+ y2j+ z2k) = 2(1 + y + z), the rhs is

2

∫∫∫

Ω
(1 + y + z)dV = 2

∫∫∫

Ω
1dV + 2

∫∫∫

Ω
ydV + 2

∫∫∫

Ω
zdV.

By symmetry, we have

∫∫∫

Ω
ydV =

∫∫∫

Ω
zdV = 0.

Hence

∫∫

S
F · ndS = 2

∫∫∫

Ω
(1 + y + z)dV = 2

∫∫∫

Ω
1dV =

8

3
π.

Example 15.8.3. Find the flux of F = xyi+ yzj+ xzk through the box cut

from the first octant by the planes x = 1, y = 1, z = 1.

sol. Let Ω be the region inside S. By Gauss theorem, it holds that

∫∫

S
F · ndS =

∫∫∫

Ω
divFdV.

Since divF = ∇ · (xyi+ yzj+ xzk) = x+ y + z, the rhs is

∫∫∫

Ω
(x+ y + z)dV =

∫ 1

0

∫ 1

0

∫ 1

0
(x+ y + z)dxdydz =

3

2
.

Theorem 15.8.4. [Divergence of curl ] Let F be a C2 vector field defined

on a region containing Ω. Then

div (curlF) = ∇ · (∇× F) = 0.

Example 15.8.5. Show Gauss’ theorem holds for F = xi + yj + zk in Ω :

x2 + y2 + z2 ≤ a2.

sol. First compute divF = ∇ · F,

divF =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3.
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So
∫∫∫

Ω
(divF)dV =

∫∫∫

Ω
3 dV = 3

(4

3
πa3
)

= 4πa3.

To compute the surface integral, we need to find the unit normal n on ∂Ω.

Since ∂Ω is the level set of f(x, y, z) = x2+y2+z2−a2, we see the unit normal

vector to ∂Ω is

n =
∇f

||∇f || =
2(xi+ yj+ zk)
√

4(x2 + y2 + z2)
=
xi+ yj+ zk

a
.

So when (x, y, z) ∈ ∂Ω,

F · n =
x2 + y2 + z2

a
=
a2

a
= a

and
∫∫

∂Ω
F · ndS =

∫∫

∂Ω
a dS = a(4πa2) = 4πa3.

Hence
∫∫∫

Ω
(divF)dV = 4πa3 =

∫∫

∂Ω
F · ndS.

and Gauss’ theorem holds.

Example 15.8.6. Let Ω be the region given by x2 + y2 + z2 ≤ 1. Find
∫∫

∂Ω(x
2 + 4y − 5z)dS by Gauss’ theorem.

sol. To use Gauss’ theorem, we need a vector field F = F1i+F2j+F3k such

that F ·n = x2+4y−5z. Since the unit normal vector is n = xi+yj+zk, one

such obvious choice is F = xi+4j−5k. Hence we have divF = 1+0+(−0) = 1.

Now by Gauss theorem

∫∫

∂Ω
(x2 + 4y − 5z)dS =

∫∫

∂Ω
(xi+ 4j− 5k) · ndS

=

∫∫

∂Ω
F · ndS =

∫∫∫

Ω
divFdV

=

∫∫∫

Ω
1 dV =

4

3
π.

Example 15.8.7. Let Ω be the region satisfying 0 < b2 ≤ x2 + y2 + z2 ≤ a2.

Find the flux of the vector field F = (xi + yj + zk)/ρ3, ρ =
√

x2 + y2 + z2



15.8. DIVERGENCE THEOREM 63

across the boundary of Ω.

sol. On the boundary of Ω, n = ±(xi+ yj+ zk)/ρ. Hence F · n = ±(xi+

yj+ zk),

∫∫

∂Ω
F · ndS =

∫∫

Sa

F · ndS −
∫∫

Sa

F · ndS

∫∫

Sa

F · ndS =

∫∫

ρ=a

1

ρ2
dS = 4π

Thus
∫∫

∂Ω
F · ndS = 4π − 4π = 0.

To use Gauss’ theorem, we compute that ∇ ·F = 0. Hence Now by Gauss

theorem

∫∫

∂Ω
F · ndS =

∫∫∫

Ω
divFdV = 0.

Divergence as flux per unit Volume

As we have seen before that divF(P ) is the rate of change of total flux at P

per unite volume. Let Ωρ be a ball of radius ρ center at P . Then for some Q

in Ωρ,
∫∫

∂Ωρ

F · ndS =

∫∫∫

Ωρ

divFdV = divF(Q) ·Vol(Ωρ).

Dividing by the volume we get

divF(Q) =
1

Vol(Ωρ)

∫∫

∂Ωρ

F · ndS. (15.15)

Taking the limit, we see

lim
ρ→0

1

Vol(Ωρ)

∫∫

∂Ωρ

F · ndS = divF(P ). (15.16)

Now we can give a physical interpretation: If F is the velocity of a fluid, then

divF(P ) is the rate at which the fluid flows out per unit volume.
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Example 15.8.8. Find
∫∫

S f · dS, where F = xy2i + x2yj + yk and S is the

surface of the the cylindrical region x2 + y2 = 1 bounded by the planes z = 1

and z = −1.

sol. Let W denote the solid region given above. By divergence theorem,

∫∫∫

W
divF dV =

∫∫∫

W
(x2 + y2)dxdydz

=

∫ 1

−1

(
∫∫

x2+y2≤1
(x2 + y2)dxdy

)

dz

= 2

∫∫

x2+y2≤1
(x2 + y2)dxdy.

Now by polar coordinate,

2

∫∫

x2+y2≤1
(x2 + y2)dxdy = 2

∫ 2π

0

∫ 1

0
r3drdθ = π.

Gauss’ Law

Now apply Gauss’ theorem to a region with a hole and get an important result

in physics:

The electric field created by a point charge q at the origin is

E(x, y, z) =
q

4πǫ0

xi+ yj+ zk

r3
=

q

4πǫ0

r

r3
, r =

√

x2 + y2 + z2

Theorem 15.8.9. (Gauss’ Law) Let M be a region in R
3 and O /∈ ∂M .

Then
∫∫

∂M
E · ndS =

q

4πǫ0

∫∫

∂M

r · n
r3

dS =







0 if O /∈M ,

q
ǫ0

if O ∈M.
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Several versions of Green’s theorem:

Tangential form

∮

C
F ·Tds =

∫∫

R
∇× F · kdA

Stokes’ theorem

∮

∂S
F ·Tds =

∫∫

S
∇× F · ndS

Normal form

∮

C
F · nds =

∫∫

R
∇ · FdA

Divergcenc theorem

∫∫

∂Ω
F · ndS =

∫∫∫

Ω
∇ · FdV


